ACOS10 Contact Card Functional Specifications V1.04 # **Table of Contents** | 1.1. Features. 4 1.2. Technical Specifications. 4 1.2.1. Electrical. 4 1.2.2. EEPROM. 4 1.2.3. Environmental. 4 2.0. Card Management. 5 2.1. Card Life Cycle States. 5 2.1.1. Pre-Personalization State 5 2.1.2. Personalization State 5 2.1.3. User State 5 2.2. Card Header Block 5 2.3. Typical Steps in Card Development 6 2.4. Answer To Reset (ATR). 6 2.4. Answer To Reset (ATR). 6 2.4. Answer To Reset (ATR). 6 3.0. File System 7 3.1. Hilerarchical File System. 7 3.2. File Header Data Structure 5 3.2.1 File Descriptor Byte (FDB). 5 3.2.1 File Descriptor Byte (FDB). 5 3.2.1 File Cycle Status Integer (LCSI). 5 3.2.2. Short File Identifier (SFI). | 1.0. | Introduction | . 4 | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------|-----| | 1.2.1 Technical Specifications 4 1.2.2 EEPROM 4 1.2.3 Environmental 4 2.0. Card Management 5 2.1. Card Life Cycle States 5 2.1.1 Pre-Personalization State 5 2.1.2 Personalization State 5 2.1.3 User State 5 2.2 Card Header Block 5 2.3 Typical Steps in Card Development 6 2.4 Answer To Reset (ATR) 6 2.4 Answer To Reset (ATR) 6 3.0. File System 7 3.1 Hierarchical File System 7 3.2 File Header Data Structure 6 3.2.1 File Descriptor Byte (FDB) 6 3.2.2.1 File Descriptor Byte (FDB) 6 3.2.2.1 File Cycle Status Integer (LCSI) 6 3.2.2.3 File ID 6 3.2.3 File IC Cycle Status Integer (LCSI) 6 3.2.4 File System 6 3.2.5 Short File Identifier (SFI) 6 | 1.1. | Features | 4 | | 1.2.2. EEPROM | | | | | 1.2.3. Environmental. 4.4 2.0. Card Management | | | | | 2.0. Card Management 5 2.1. Card Life Cycle States 5 2.1.1. Pre-Personalization State 5 2.1.2. Personalization State 5 2.1.3. User State 5 2.1.3. User State 5 2.2. Card Header Block 5 2.3. Typical Steps in Card Development 6 2.4. Answer To Reset (ATR). 6 2.4. Customizing the ATR 6 3.0. File System 7 3.1. Hierarchical File System 7 3.2. File Header Data Structure 6 3.2.1. File Deace Status Interper (FDB) 6 3.2.2. Data Coded Byte (DCB) 6 3.2.2. Security Attribute Compact (SAC Len) 6 3.2.3. File D </td <td></td> <td></td> <td></td> | | | | | 2.1. Card Life Cycle States 5. 2.1.1. Pre-Personalization State 5. 2.1.2. Personalization State 5. 2.1.3. User State 5. 2.2. Card Header Block 5. 2.3. Typical Steps in Card Development 6. 2.4. Answer To Reset (ATR) 6. 2.4.1. Customizing the ATR 6. 3.0. File System 7. 3.1. Hierarchical File System 7. 3.2. File Header Data Structure 6. 3.2.1. File Descriptor Byte (FDB) 8. 3.2.2. File ID Descriptor Byte (FDB) 8. 3.2.3. File ID 8. 3.2.4. File Size 6. 3.2.5. Short File Identifier (SFI) 8. 3.2.6. Life Cycle Status Integer (LCSI) 8. 3.2.7. Security Attribute Expanded Length (SAC Len) 8. 3.2.8. Security Attribute Expanded Length (SAE Len) 8. 3.2.10. Parent Address 9. 3.2.11. Checksum 9. | 1.2. | 3. Environmental | 4 | | 2.1.1. Pre-Personalization State 5. 2.1.2. Personalization State 5. 2.1.3. User State 5. 2.2. Card Header Block 5. 2.3. Typical Steps in Card Development 6. 2.4. Answer To Reset (ATR) 6. 2.4.1. Customizing the ATR 6. 3.0. File System 7. 3.1. Hierarchical File System 7. 3.2. File Header Data Structure 6. 3.2.1. File Descriptor Byte (FDB) 8. 3.2.2. File Descriptor Byte (FDB) 8. 3.2.3. File ID 8. 3.2.4. File Size 8. 3.2.5. Short File Identifier (SFI) 8. 3.2.6. Life Cycle Status Integer (LCSI) 8. 3.2.7. Security Attribute Expanded Length (SAC Len) 8. 3.2.8. Security Attribute Expanded Length (SAE Len) 8. 3.2.9. DF Name Length/First Cyclic Record 9. 3.2.11. Checksum 9. 3.2.12. Security Attribute Expanded (SAE) | 2.0. | Card Management | 5 | | 2.1.1. Pre-Personalization State 5. 2.1.2. Personalization State 5. 2.1.3. User State 5. 2.2. Card Header Block 5. 2.3. Typical Steps in Card Development 6. 2.4. Answer To Reset (ATR) 6. 2.4.1. Customizing the ATR 6. 3.0. File System 7. 3.1. Hierarchical File System 7. 3.2. File Header Data Structure 6. 3.2.1. File Descriptor Byte (FDB) 8. 3.2.2. File Descriptor Byte (FDB) 8. 3.2.3. File ID 8. 3.2.4. File Size 8. 3.2.5. Short File Identifier (SFI) 8. 3.2.6. Life Cycle Status Integer (LCSI) 8. 3.2.7. Security Attribute Expanded Length (SAC Len) 8. 3.2.8. Security Attribute Expanded Length (SAE Len) 8. 3.2.9. DF Name Length/First Cyclic Record 9. 3.2.11. Checksum 9. 3.2.12. Security Attribute Expanded (SAE) | 2.1. | Card Life Cycle States | 5 | | 2.1.3. User State 5. 2.2. Card Header Block 5. 2.3. Typical Steps in Card Development 6. 2.4. Answer To Reset (ATR). 6. 2.4.1. Customizing the ATR 6. 3.0. File System 7. 3.1. Hierarchical File System 7. 3.2. File Header Data Structure 5. 3.2.1. File Descriptor Byte (FDB) 5. 3.2.2. Data Coded Byte (DCB) 6. 3.2.3. File ID 6. 3.2.4. File Size 6. 3.2.5. Short File Identifier (SFI). 6. 3.2.6. Life Cycle Status Integer (LCSI) 6. 3.2.7. Security Attribute Compact Length (SAC Len) 6. 3.2.8. Security Attribute Compact Length (SAC Len) 8. 3.2.9. DF Name Length/First Cyclic Record 9. 3.2.10. Parent Address 9. 3.2.11. Checksum 9. 3.2.12. Security Attribute Compact (SAC) 9. 3.2.13. Security Attribute Expanded (SAE) | | | | | 2.2. Card Header Block 5. 2.3. Typical Steps in Card Development 6. 2.4. Answer To Reset (ATR) | | | | | 2.4. Typical Steps in Card Development 6. 2.4. Answer To Reset (ATR). 6. 3.0. File System. 7 3.1. Hierarchical File System. 7 3.2. File Header Data Structure. 8 3.2.1. File Descriptor Byte (FDB) 8 3.2.2. Data Coded Byte (DCB) 8 3.2.3. File ID 8 3.2.4. File Size 8 3.2.5. Short File Identifier (SFI) 8 3.2.6. Life Cycle Status Integer (LCSI) 8 3.2.7. Security Attribute Compact Length (SAC Len) 8 3.2.8. Security Attribute Expanded Length (SAE Len) 8 3.2.9. DF Name Length/First Cyclic Record 9 3.2.10. Parent Address 9 3.2.11. Checksum 9 3.2.12. Security Attribute Compact (SAC) 9 3.2.13. Security Attribute Expanded (SAE) 9 3.2.14. SE File ID (for DF only) 9 3.2.15. FCI File ID (for DF only) 9 3.2.16. DF Name (for DF | | | | | 2.4.1. Answer To Reset (ATR). 6. 2.4.1. Customizing the ATR. 6. 3.0. File System. 7 3.1. Hierarchical File System. 7 3.2. File Header Data Structure. 8 3.2.1. File Descriptor Byte (FDB) 8 3.2.2. Data Coded Byte (DCB) 8 3.2.3. File ID 8 3.2.4. File Size 8 3.2.5. Short File Identifier (SFI) 8 3.2.6. Life Cycle Status Integer (LCSI) 8 3.2.7. Security Attribute Compact Length (SAC Len) 8 3.2.8. Security Attribute Expanded Length (SAE Len) 8 3.2.9. DF Name Length/First Cyclic Record 9 3.2.10. Parent Address 9 3.2.11. Checksum 9 3.2.12. Security Attribute Compact (SAC) 9 3.2.13. Security Attribute Expanded (SAE) 9 3.2.14. SE File ID (for DF only) 9 3.2.15. FCI File ID (for DF only) 9 3.2.16. DF Name (for DF only) <td></td> <td></td> <td></td> | | | | | 2.4.1. Customizing the ATR. 6.6 3.0. File System | | | | | 3.0. File System 7 3.1. Hierarchical File System 7 3.2. File Header Data Structure | | | | | 3.1. Hierarchical File System 7 3.2. File Header Data Structure 8 3.2.1. File Descriptor Byte (FDB) 8 3.2.2. Data Coded Byte (DCB) 8 3.2.3. File ID 8 3.2.4. File Size 8 3.2.5. Short File Identifier (SFI) 8 3.2.6. Life Cycle Status Integer (LCSI) 8 3.2.7. Security Attribute Compact Length (SAC Len) 8 3.2.8. Security Attribute Expanded Length (SAE Len) 8 3.2.9. DF Name Length/First Cyclic Record 9 3.2.10. Parent Address 9 3.2.11. Checksum 9 3.2.12. Security Attribute Compact (SAC) 9 3.2.13. Security Attribute Expanded (SAE) 9 3.2.14. SE File ID (for DF only) 9 3.2.15. FCI File ID (for DF only) 9 3.2.16. DF Name (for DF only) 9 3.2.16. DF Name (for DF only) 9 3.1 Natural Security Files 9 4.0. Transaction | 2.0 | - | | | 3.2. File Header Data Štructure. 8 3.2.1. File Descriptor Byte (FDB). 8 3.2.2. Data Coded Byte (DCB). 8 3.2.3. File ID. 8 3.2.4. File Size. 8 3.2.5. Short File Identifier (SFI). 8 3.2.6. Life Cycle Status Integer (LCSI). 8 3.2.7. Security Attribute Compact Length (SAC Len). 8 3.2.8. Security Attribute Expanded Length (SAE Len). 8 3.2.9. DF Name Length/First Cyclic Record. 9 3.2.10. Parent Address. 9 3.2.11. Checksum. 9 3.2.12. Security Attribute Compact (SAC). 9 3.2.13. Security Attribute Expanded (SAE). 9 3.2.14. SE File ID (for DF only). 9 3.2.16. DF Name (for DF only). 9 3.2.16. DF Name (for DF only). 9 3.2.16. DF Name (for DF only). 9 3.2.17. Security Features. 9 4.0. Transaction Application. 10 4.1. Accoun | 3.0. | - | | | 3.2.1. File Descriptor Byte (FDB) 8.8 3.2.2. Data Coded Byte (DCB) 8.8 3.2.3. File ID 8.8 3.2.4. File Size 8.8 3.2.5. Short File Identifier (SFI) 8.8 3.2.6. Life Cycle Status Integer (LCSI) 8.8 3.2.7. Security Attribute Compact Length (SAC Len) 8.8 3.2.8. Security Attribute Expanded Length (SAE Len) 8.8 3.2.9. DF Name Length/First Cyclic Record 9.8 3.2.10. Parent Address 9.8 3.2.11. Checksum 9.8 3.2.12. Security Attribute Expanded (SAC) 9.8 3.2.13. Security Attribute Expanded (SAE) 9.8 3.2.14. SE File ID (for DF only) 9.8 3.2.15. FCI File ID (for DF only) 9.8 3.2.16. DF Name (for DF only) 9.8 3.2.16. DF Name (for DF only) 9.8 3.2.16. Transaction Application 10 4.1. Account File 10 4.2. Transaction Application 11 5.1. | | | | | 3.2.2. Data Coded Byte (DCB) | | | | | 3.2.3. File ID. 8. 3.2.4. File Size 8. 3.2.5. Short File Identifier (SFI). 8. 3.2.6. Life Cycle Status Integer (LCSI) 8. 3.2.7. Security Attribute Compact Length (SAC Len) 8. 3.2.8. Security Attribute Expanded Length (SAE Len) 8. 3.2.9. DF Name Length/First Cyclic Record 9. 3.2.10. Parent Address 9. 3.2.11. Checksum 9. 3.2.12. Security Attribute Compact (SAC) 9. 3.2.13. Security Attribute Expanded (SAE) 9. 3.2.14. SE File ID (for DF only) 9. 3.2.15. FCI File ID (for DF only) 9. 3.2.16. DF Name (for DF only) 9. 3.2.16. DF Name (for DF only) 9. 3.2.16. DF Name (for DF only) 9. 3.2.17. For File ID (for DF only) 9. 3.2.18. FCI File ID (for DF only) 9. 3.2.19. FOR Name (for DF only) 9. 3.2.19. FOR Name (for DF only) 9. 3.2.10. <td>_</td> <td> J ()</td> <td></td> | _ | J () | | | 3.2.4. File Size 8 3.2.5. Short File Identifier (SFI) | _ | | | | 3.2.6. Life Cycle Status Integer (LCSI) 8 3.2.7. Security Attribute Compact Length (SAC Len) 8 3.2.8. Security Attribute Expanded Length (SAE Len) 8 3.2.9. DF Name Length/First Cyclic Record 9 3.2.10. Parent Address 9 3.2.11. Checksum 9 3.2.12. Security Attribute Compact (SAC) 9 3.2.13. Security Attribute Expanded (SAE) 9 3.2.14. SE File ID (for DF only) 9 3.2.15. FCI File ID (for DF only) 9 3.2.16. DF Name (for DF only) 9 3.3. Internal Security Files 9 4.0. Transaction Application 10 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1. Security Attributes 11 5.1. Security Attribute Expanded (SAE) 11 5.2. Security Attribute Expanded (SAE) 11 5.3. Mutual Authentication 12 5.4. Short Key Extern | 3.2. | | | | 3.2.7. Security Attribute Compact Length (SAC Len) 8 3.2.8. Security Attribute Expanded Length (SAE Len) 8 3.2.9. DF Name Length/First Cyclic Record 9 3.2.10. Parent Address 9 3.2.11. Checksum 9 3.2.12. Security Attribute Compact (SAC) 9 3.2.13. Security Attribute Expanded (SAE) 9 3.2.14. SE File ID (for DF only) 9 3.2.15. FCI File ID (for DF only) 9 3.2.16. DF Name (for DF only) 9 3.3. Internal Security Files 9 4.0. Transaction Application 10 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1.1. Security Attribute Expanded (SAE) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Mess | | | | | 3.2.8. Security Attribute Expanded Length (SAE Len). 8 3.2.9. DF Name Length/First Cyclic Record 9 3.2.10. Parent Address 9 3.2.11. Checksum 9 3.2.12. Security Attribute Compact (SAC) 9 3.2.13. Security Attribute Expanded (SAE) 9 3.2.14. SE File ID (for DF only) 9 3.2.15. FCI File ID (for DF only) 9 3.2.16. DF Name (for DF only) 9 3.2.16. DF Name (for DF only) 9 3.3. Internal Security Files 9 4.0. Transaction Application 10 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Expanded (SAC) 11 5.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication | | | | | 3.2.9. DF Name Length/First Cyclic Record S. 3.2.10. Parent Address S. 3.2.11. Checksum S. 3.2.12. Security Attribute Compact (SAC) S. 3.2.13. Security Attribute Expanded (SAE) S. 3.2.14. SE File ID (for DF only) S. 3.2.15. FCI File ID (for DF only) S. 3.2.16. DF Name (for DF only) S. 3.3. Internal Security Files S. 4.0. Transaction Application 10 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 < | | | | | 3.2.10. Parent Address 9 3.2.11. Checksum 9 3.2.12. Security Attribute Compact (SAC) 9 3.2.13. Security Attribute Expanded (SAE) 9 3.2.14. SE File ID (for DF only) 9 3.2.15. FCI File ID (for DF only) 9 3.2.16. DF Name (for DF only) 9 3.3. Internal Security Files 9 4.0. Transaction Application 10 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. <td></td> <td></td> <td></td> | | | | | 3.2.12. Security Attribute Compact (SAC) 9 3.2.13. Security Attribute Expanded (SAE) 9 3.2.14. SE File ID (for DF only) 9 3.2.15. FCI File ID (for DF only) 9 3.2.16. DF Name (for DF only) 9 3.3. Internal Security Files 9 4.0. Transaction Application 10 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 11 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | | | | | 3.2.13. Security Attribute Expanded (SAE) 9 3.2.14. SE File ID (for DF only) 9 3.2.15. FCI File ID (for DF only) 9 3.2.16. DF Name (for DF only) 9 3.3. Internal Security Files 9 4.0. Transaction Application 10 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | | | | | 3.2.14. SE File ID (for DF only) 9 3.2.15. FCI File ID (for DF only) 9 3.2.16. DF Name (for DF only) 9 3.3. Internal Security Files 9 4.0. Transaction Application 10 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | | | | | 3.2.15. FCI File ID (for DF only) 9 3.2.16. DF Name (for DF only) 9 3.3. Internal Security Files 9 4.0. Transaction Application 10 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | | | | | 3.2.16. DF Name (for DF only) 9 3.3. Internal Security Files 9 4.0. Transaction Application 10 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | | | | | 4.0. Transaction Application 10 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | | | | | 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | 3.3. | Internal Security Files | 9 | | 4.1. Account File 10 4.2. Transaction 10 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | 4.0. | Transaction Application | 10 | | 4.2. Transaction 10 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | | • • | | | 5.0. Security Features 11 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | | | | | 5.1. File Security Attributes 11 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | | | | | 5.1.1. Security Attribute Compact (SAC) 11 5.1.2. Security Attribute Expanded (SAE) 11 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | 5.0. | Security Features | 11 | | 5.1.2. Security Attribute Expanded (SAE). 11 5.2. Security Environment. 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | 5.1. | | | | 5.2. Security Environment 11 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | _ | | | | 5.3. Mutual Authentication 11 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | | | | | 5.4. Short Key External Authentication 12 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | | | | | 5.5. Secure Messaging 12 5.6. Key Injection 12 5.7. Anti-tearing Mechanism 12 6.0. Life Support Application 13 | | | | | 5.7. Anti-tearing Mechanism | | | | | 6.0. Life Support Application13 | | | | | • • • • • • • • • • • • • • • • • • • • | 5.7. | Anti-tearing Mechanism | 12 | | 7.0. Contact Information | 6.0. | Life Support Application | 13 | | | 7.0. | Contact Information | 14 | # **List of Figures** | Figure 1 : Card Life Cycle States | | | | | | | | |-----------------------------------|---|--|--|--|--|--|--| | Figure 2 : File System Hierarchy | | | | | | | | | | | | | | | | | | | | | | | | | | | List of Tables | | | | | | | | | Table 1 : Life Cycle Status Byte | 8 | | | | | | | ## 1.0. Introduction The purpose of this document is to describe in detail the features and functions of the ACOS10 Contact Card, a versatile smart card operating system developed by Advanced Card System Ltd. #### 1.1. Features - Full 32 KB of EEPROM for application data - Compliance with ISO 7816 Parts 1, 2, 3, 4 - Supports ISO 7816 Part 4 file structures: Transparent, Linear Fixed, Linear Variable, Cyclic - High-speed transmission rate from 9.6 Kbps to 223.2 Kbps - DES/Triple DES capability - Hardware based random number generator compliant to FIPS 140-2 - Secure Messaging ensures data transfers are confidential and authenticated - PBOC 2.0 e-Deposit and e-Purse Certified available for payment applications - Multi-level secured access hierarchy - · Anti-tearing done on file headers and PIN commands ## 1.2. Technical Specifications The following are some technical properties of the ACOS10 Contact Card: #### 1.2.1. Electrical - Operating Voltage: 5 V DC+/-10% (Class A) and 3 V DC +/-10% (Class B) - Maximum Supply Current: <10 mA - ESD Protection: ≤ 4 KV #### 1.2.2. **EEPROM** - Capacity: 32 KB - EEPROM Endurance: 100,000 erase/write cycles - Data Retention: 10 years #### 1.2.3. Environmental - Operating Temperature: -25 °C to 85 °C - Storage Temperature: -40 °C to 100 °C ## 2.0. Card Management This section outlines the card level features and management functions. ## 2.1. Card Life Cycle States ACOS10 Contact Card has the following card states: Figure 1: Card Life Cycle States #### 2.1.1. Pre-Personalization State This is the initial state of the card. The user is allowed to freely access the card header block (defined in the last section). The card header block can be referenced by its address using the READ BINARY or UPDATE BINARY command. User can personalize the Card's Header Block as he wishes. Card remains in this state as long as: (1) MF is not created; and (2) the Card Life Cycle Fuse (address EEC7) of the Card Header Block is FFh. #### 2.1.2. Personalization State The card goes into this state once the MF is successfully created and *Card Life Cycle Fuse* is not blown (still FFh). User can no longer directly access the card's memory as in the previous state. User can create and test files created in the card as if in Operational Mode. User can perform tests under this state and may revert to the Pre-Personalization State by using the Clear Card command. #### 2.1.3. User State Card goes into this state once the MF is successfully created and *Card Life Cycle Fuse* is blown. Alternatively, users can use the Activate Card command to go from the personalization state to user state. #### 2.2. Card Header Block ACOS10 is a card operating system that has 32 KB EEPROM. In its initial state (where no file exists), user can access the card header block by using read/write binary with the indicated address. ## 2.3. Typical Steps in Card Development - 1. User personalizes the card's header block using UPDATE BINARY. - 2. User then creates his card file structure, starting with MF. DF's and EF's are created and the card's security design is tested at this state. If design flaws are found, user can always return to state 1 using the *Clear Card* command. - 3. Once the card's file and security design is final and tested, perform *Clear Card* command and blow the *Card Life Cycle Fuse* using the *Update Binary* command. - 4. Card goes into Operational Mode, when the MF is created again. User can then re-construct his file system under this state. Card can no longer go back to previous states. ## 2.4. Answer To Reset (ATR) After a hardware reset (e.g. power up), the card transmits an Answer To Reset (ATR) in compliance with ISO 7816 Part 3, ACOS10 supports the protocol type T=0 in direct convention. The protocol function is not implemented. The following is the default ATR. For full descriptions of ATR options see ISO 7816 Part 3. #### 2.4.1. Customizing the ATR ACOS10's ATR can customize the transmission speed or have specific identification information in the card. The new ATR must be compliant to ISO 7816 Part 3, otherwise the card may become unresponsive and non-recoverable at the next power-up or card reset. Therefore, it is only recommended to change T0 (lower nibble), TA1 and historical bytes. ## 3.0. File System This section explores the file system of the ACOS10 Smart Card. ## 3.1. Hierarchical File System ACOS10 is fully compliant to ISO 7816 Part 4 file system and structure. The file system is very similar to that of the modern computer operating system. The root of the file is the Master File (of MF). Each Application or group of data files in the card can be contained in a directory called a Dedicated File (DF). Each DF or MF can store data in Elementary Files (EF). The ACOS10 allows arbitrary depth DF tree structure. That is, the DFs can be nested. Please see figure below. Figure 2: File System Hierarchy #### 3.2. File Header Data Structure ACOS10 organizes the user EEPROM area by files. Every file has a File Header, which is a block of data that describes the file's properties. Knowledge of the file header block will help the application developer accurately plan for the usage of the EEPROM space. #### 3.2.1. File Descriptor Byte (FDB) This field indicates the file's type. The size of the File Header block varies depending on the file type. #### 3.2.2. Data Coded Byte (DCB) ACOS10 does not use this field. It is part of the header to comply with ISO 7816 Part 4. #### 3.2.3. File ID This is a 16-bit field that uniquely identifies a file in the MF or a DF. Each file under a DF (or MF) must be unique. #### 3.2.4. File Size This is a 16-bit field that specifies the size of the file. It does not include the size of the file header. For record-based EF's, the first byte indicates the maximum record length (MRL), while the second indicates the number of records (NOR). For non record-based EF (Transparent EF), the first byte represents the high byte of the file size and the second is the low-order byte. For DF's, this field is not used. #### 3.2.5. Short File Identifier (SFI) This is a 5-bit value that represents the file's Short ID. ACOS10 allows file referencing through SFI. The last five bits of the File ID does not necessarily have to match this SFI. Two (2) files may have the same SFI under a DF. In such case, ACOS10 will select the one created first. #### 3.2.6. Life Cycle Status Integer (LCSI) This byte indicates the life status of the file, as defined in ISO 7816 part 4. It can have the following values: | b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | Hex | Meaning | |----|----|----|----|----|----|----|----|---------|-------------------------------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 01 | Creation state | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 05 | Operational state (activated) | | 0 | 0 | 0 | 0 | 1 | - | - | - | 08 – 0F | Termination state | Table 1: Life Cycle Status Byte - In Creation/Initialization states, all commands to the file will be allowed by the COS. - In Activated state, commands to the file are allowed only if the file's security conditions are met - In Terminated State, all commands to the file will not be allowed by the COS. #### 3.2.7. Security Attribute Compact Length (SAC Len) This byte indicates the length of the SAC structure that is included in the file header below. #### 3.2.8. Security Attribute Expanded Length (SAE Len) This byte indicates the length of the SAE structure that is included in the file header below. #### 3.2.9. DF Name Length/First Cyclic Record If the file is a DF, this field indicates the length of the DF's Name. If the file is a Cyclic EF, this field holds the index of the last-altered record. Otherwise, this field is not used. #### 3.2.10. Parent Address Two (2) bytes indicating the physical EEPROM address of the file's parent DF. #### 3.2.11. Checksum To maintain data integrity in the file header, a checksum is used by the COS. It is computed by XORing all the preceding bytes in the header. Commands to a file will not be allowed if the file is found to have a wrong checksum. #### 3.2.12. Security Attribute Compact (SAC) This is a data structure that represents security conditions for certain file actions. The data is coded in an "AM-SC" template as defined in ISO-7816. The maximum size of this field is 8 bytes. See **Section 5.1.1** for more information. #### 3.2.13. Security Attribute Expanded (SAE) This is a data structure that represents security conditions for certain card actions. The data is coded differently from SAC, and is also defined in ISO 7816. The maximum size of this field is 32 bytes. See **Section 5.1.2** for more information. For DF files, additional fields are included in the file header. #### 3.2.14. SE File ID (for DF only) For DF, this field is made up of 2 bytes containing the File ID of one of its children. That file is known as the Security Environment File, which is processed internally by the COS. #### 3.2.15. FCI File ID (for DF only) For DF, this field is made up of 2 bytes containing the SFIs of FCI File and Issuer FCI File of its children. #### 3.2.16. DF Name (for DF only) For DF, this field is the file's Long Name. Files can be selected through its long name - which can be up to 16 bytes. ## 3.3. Internal Security Files The behavior of the COS will depend on the contents of the security-related internal files. When internal files are activated, its READ condition should be set to NEVER. Typically, a DF should have: (1) a Internal Linear Variable File (FDB = 0C) to hold PIN codes for verification, (2) a Internal Linear Variable File to hold KEY codes for authentication, and (3) an SE file to hold security conditions. An Internal file may contain (1) PIN data structure or (2) KEY data structure. ## 4.0. Transaction Application #### 4.1. Account File Account file can be an Electronic Purse (EP)/Electronic Deposit (ED) File. The transaction log file with fixed record length equals to 23 and has maximum 20 records. Each DF can contain only one Account file. The access condition of *ED Get Balance* command is the same as Read Access condition of Account File. *EP Get Balance* command is free to access. The Transaction is following the standards: - China Financial Integrated Circuit Card Specifications Part 1 Electronic Purse/Electronic Deposit Card Specification - 2. China Financial Integrated Circuit Card Specifications Part 2 Electronic Purse/Electronic Deposit Application Specification #### 4.2. Transaction For more details about Transaction, please refer to China Financial Integrated Circuit Card Specifications – Part 2 Electronic Purse/Electronic Deposit Application Specification. ## 5.0. Security Features This section illustrates the access rights and security capabilities of the ACOS10 Contact card along with its environment and usage. They are: - File Security Attributes - Security Environment - Mutual Authentication - Short Key External Authentication - Secure Messaging - Key Injection - Anti-tearing Mechanism Furthermore, the file commands are restricted by the COS depending on the target file's (or current DF's) security Access Conditions. These conditions are based on PINs and KEYs being maintained by the system. Card Commands are allowed if certain PIN's or KEY's are submitted or authenticated. Global PIN's are PINs that reside in a PIN EF (EF1) directly under the MF. Likewise, local Keys are KEYs that reside in a KEY EF (EF2) under the currently selected DF. There can be a maximum of: 31 Global PINs, 31 Local PINs, 31 Global Keys, and 31 Local Keys at a given time. ## 5.1. File Security Attributes Each file (MF, DF, or EF) has a set of security attributes set in its headers. There are two types of security attributes Security Attribute Compact (SAC) and Security Attribute Expanded (SAE). #### 5.1.1. Security Attribute Compact (SAC) The SAC is a data structure that resides in each file. It indicates what file actions are allowed on the file, and what conditions need to be satisfied for each action. The SE record is found in the SE file - whose ID is specified in the current DF's header. #### 5.1.2. Security Attribute Expanded (SAE) The SAE is a data structure that resides in each file. It tells the COS whether or not to allow file commands to proceed. SAE is more general compared to SAC. The format of SAE is an access mode data object (AMDO) followed by one or more security condition data objects (SCDO). ## 5.2. Security Environment Security conditions are coded in an SE File. Every DF has a designated SE FILE, whose file ID is indicated in the DF's header block. Each SE record has the following format: #### <SE ID Template> <SE Authentication Template> **SE ID Template:** The SE ID Template is a mandatory data object whose value states the identifier that is referenced by the SC byte of the SAC and SAE. **SE Authentication Template:** The Authentication Template (AT) defines the security condition that must be meant for this SE to be satisfied. The security conditions are either PIN or Key authentications. #### 5.3. Mutual Authentication Mutual Authentication is a process in which both the card and the card-accepting device verify that the respective entity is genuine. A Session Key is the result of a successful execution of mutual authentication. The session key is only valid during a session. A session is defined as the time after a successful execution of the mutual authentication procedure and a reset of the card or the execution of another mutual authentication procedure. ## 5.4. Short Key External Authentication Short Key External authentication uses a card challenge and terminal response method to gain authorization to the card. This allows for shorter external authentication or one-time-password that is more optimal for human input. ## 5.5. Secure Messaging There are two Secure Messaging (SM) modes available for ACOS10, namely: - 1. Secure Messaging with MAC (SM-MAC) This ensures the authenticity of command. - 2. Secure Messaging with Data Encryption (SM-ENC) This ensures the confidentiality of command. ## 5.6. Key Injection Key Injection can be used to securely load a key or diversified key from an ACOS6-SAM card into client ACOS10 card. For the purpose of key injection, we shall refer to the ACOS6-SAM with the key to inject the "source SAM" and the ACOS10 to receive the key the "target SAM". This function allows for a master and subordinate SAM relationships and the subordinate SAMs can perform different specific operations. The target card uses the *Set Key* command and the source SAM will use the *Get Key* command to perform key injection. ## 5.7. Anti-tearing Mechanism ACOS10 uses an **anti-tearing** mechanism in order to protect card from data corruption due to card tearing (i.e., card suddenly pulled out of reader during data update, or reader suffer mechanical failure during card data update). On card reset, ACOS10 looks at the anti-tearing fields and does the necessary data recovery. In such case, the COS will return the saved data to its original address in the EEPROM. # 6.0. Life Support Application These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. ACS customers using or selling these products for use in such applications do so on their own risk and agree to fully indemnify ACS for any damages resulting from such improper use or sale. ## 7.0. Contact Information For additional information please visit http://www.acs.com.hk. For sales inquiry please send e-mail to info@acs.com.hk.