

ACR1281U-C1 USB Dual Interface Reader

Application Programming Interface V1.07

Subject to change without prior notice

info@acs.com.hk www.acs.com.hk

Table of Contents

1.0.	Introduction	4
2.0.	Features	5
3.0.	ACR1281U-C1 Architecture	6
3.1. 3.2.	Reader Block Diagram Communication between PC/SC driver and ICC, PICC and SAM	
4.0.	Hardware Design	7
4.1.	USB	
4.1		
4.1		
4.2.	Contact Smart Card Interface	7
4.2. 4.2		
4.2		
4.3.	Contactless Smart Card Interface	
4.3		
4.3	0	
4.4.	User Interface	
4.4		
4.4		
5.0.	Software Design	9
5.1.	Contact Smart Card Protocol	
5.1		
5.1		.12
5.1		
5.1. 5.1.		
5.1	•	
5.1	•	.34
5.1		
5.1		
5.2.	Contactless Smart Card Protocol	
5.2		
5.2		
5.2. 5.2		
5.3.	Peripherals Control	
5.3	•	
5.3		
5.3		
5.3		
5.3		
5.3. 5.3.		
5.3		
5.3		
5.3		
5.3		
5.3		
	13. Set PICC operating parameter	
	14. Read PICC operating parameter	
5.3. 5.3.		
	17. Set auto PPS	
	18. Read auto PPS	

Appendix A.	Basic program flow for contactless applications	.85
Appendix B.	Accessing MIFARE DESFire tags (ISO 14443-4)	.86
Appendix C.	Extended APDU Example	.88
Appendix D.	Escape Command Example	.90
Appendix E.	Supported Card Types	.91
Appendix F.	ACR128 Compatibility	.92

List of Figures

Figure 1 : ACR1281U-C1 Reader Block Diagram	6
Figure 2 : ACR1281U-C1 Architecture	6

List of Tables

Table 1 : USB Interface Wiring	7
Table 2 : Buzzer Event	8
Table 3 : LED Indicator	8
Table 4 : Blown Fuse Code Values	49
Table 5 : ISO 14443 Part 3 ATR Format	51
Table 6 : ISO 14443 Part 4 ATR Format	53
Table 7 : MIFARE 1K Memory Map	57
Table 8 : MIFARE 4K Memory Map	58
Table 9 : MIFARE Ultralight Memory Map	59

1.0. Introduction

ACR1281U-C1 DualBoost II is the second generation of ACS's ACR128 DualBoost Reader. ACR1281U-C1 is a powerful and efficient dual interface smart card reader, which can be used to access ISO 7816 MCU cards, MIFARE® cards and ISO 14443 Type A and B contactless cards. It makes use of the USB CCID class driver and USB interface to connect to a PC and accept card commands from the computer application.

ACR1281U-C1 acts as the intermediary device between the computer and the card. The reader, which communicates with a contactless tag, MCU card, SAM card, or the device peripherals (LED or buzzer), will carry out a command issued from the computer. It has three interfaces namely the PICC, ICC and SAM interfaces, which all follow the PC/SC specifications. The contact interface makes use of the APDU commands as defined in ISO 7816 specifications. For contact MCU card operations, please refer to the related card documentation and the PC/SC specifications.

This API document details how the PC/SC APDU commands are implemented for the contactless interface, contact memory card support and device peripherals of ACR1281U-C1.

Page 4 of 93

2.0. Features

The ACR1281U-C1 USB Dual Interface Reader has the following features:

- USB 2.0 Full-speed Interface
- CCID-compliant
- Smart Card Reader:
 - o Contactless Interface:
 - Read/Write speed of up to 848 Kbps
 - Built-in antenna for contactless tag access, with card reading distance of up to 50 mm (depending on tag type)
 - Supports ISO 14443 Part 4 Type A and B cards and MIFARE series
 - Built-in anti-collision feature (only one tag is accessed at any time)
 - Supports extended APDU (max. 64 KB)
 - o Contact Interface:
 - Supports ISO 7816 Class A, B and C (5 V, 3 V and 1.8 V)
 - Supports microprocessor cards with T=0 or T=1 protocol
 - Supports memory cards
 - o SAM Interface:
 - One SAM Slot
 - Supports ISO 7816 Class A SAM cards
- Application Programming Interface:
 - Supports PC/SC
 - Supports CT-API (through wrapper on top of PC/SC)
- Built-in Peripherals:
 - Two user-controllable LEDs
 - o User-controllable buzzer
- USB Firmware Upgradability
- Supports Android[™] 3.1 and later¹
- Compliant with the following standards:
 - o ISO 14443
 - o ISO 7816
 - o PC/SC
 - o CCID
 - o CE
 - o FCC
 - o RoHS 2
 - o Microsoft® WHQL

Page 5 of 93

¹ Uses an ACS-defined Android Library

3.0. ACR1281U-C1 Architecture

3.1. Reader Block Diagram

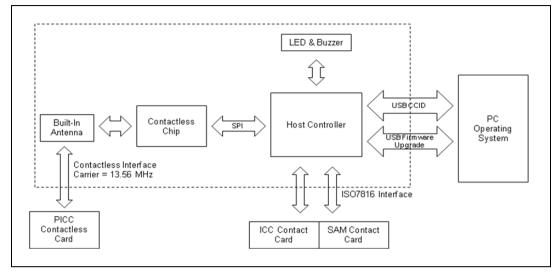


Figure 1: ACR1281U-C1 Reader Block Diagram

3.2. Communication between PC/SC driver and ICC, PICC and SAM

The protocol being used between ACR1281U-C1 and the PC is CCID. All communications between ICC, PICC and SAM are PC/SC-compliant.

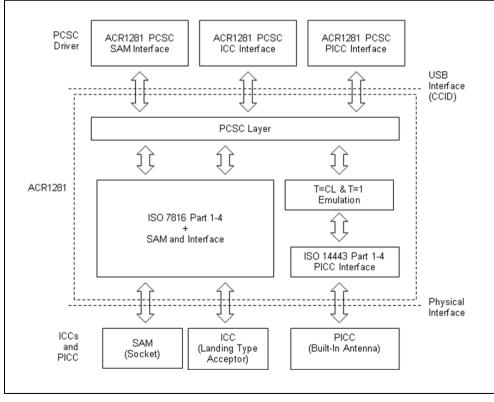


Figure 2: ACR1281U-C1 Architecture

Page 6 of 93

4.0. Hardware Design

4.1. USB

The ACR1281U-C1 connects to a computer through USB following the USB standard.

4.1.1. Communication Parameters

The ACR1281U-C1 connects to a computer through USB as specified in the USB Specification 2.0. The ACR1281U-C1 is working in full-speed mode, i.e. 12 Mbps.

Pin	Signal	Function
1	V_{BUS}	+5 V power supply for the reader
2	D-	Differential signal transmits data between ACR1281U-C1 and PC
3	D+	Differential signal transmits data between ACR1281U-C1 and PC
4	GND	Reference voltage level for power supply

Table	1:1	USB	Interface	Wiring
-------	-----	-----	-----------	--------

Note: For ACR1281U-C1 to function properly through USB interface, the device driver should be installed.

4.1.2. Endpoints

The ACR1281U-C1 uses the following endpoints to communicate with the host computer:

Control Endpoint – For setup and control purposes.

Bulk-OUT – For commands to be sent from host to ACR1281U-C1 (data packet size is 64 bytes).

Bulk-IN – For response to be sent from ACR1281U-C1 to host (data packet size is 64 bytes).

Interrupt-IN – For card status message to be sent from ACR1281U-C1 to host (data packet size is 8 bytes).

4.2. Contact Smart Card Interface

The interface between the ACR1281U-C1 and the inserted smart card follows the specifications of ISO 7816-3 with certain restrictions or enhancements to increase the practical functionality of the ACR1281U-C1.

4.2.1. Smart Card Power Supply VCC (C1)

The current consumption of the inserted card must not be any higher than 50 mA.

4.2.2. Card Type Selection

Before activating the inserted card, the controlling PC always needs to select the card type through the proper command sent to the ACR1281U-C1. This includes both memory card and MCU-based cards.

For MCU-based cards the reader allows to select the preferred protocol, T=0 or T=1. However, this selection is only accepted and carried out by the reader through the PPS when the card inserted in the reader supports both protocol types. Whenever a MCU-based card supports only one protocol type, T=0 or T=1, the reader automatically uses that protocol type, regardless of the protocol type selected by the application.

Page 7 of 93

4.2.3. Interface for Microcontroller-based Cards

For microcontroller-based smart cards only the contacts C1 (VCC), C2 (RST), C3 (CLK), C5 (GND) and C7 (I/O) are used. A frequency of 4.8 MHz is applied to the CLK signal (C3).

4.3. Contactless Smart Card Interface

The interface between the ACR1281U-C1 and the contactless card follows the specifications of ISO 14443 with certain restrictions or enhancements to increase the practical functionality of the ACR1281U-C1.

4.3.1. Carrier Frequency

The carrier frequency for ACR1281U-C1 is 13.56 MHz.

4.3.2. Card Polling

The ACR1281U-C1 automatically polls the contactless cards that are within the field. ISO 14443-4 Type A, ISO 14443-4 Type B and MIFARE cards are supported.

4.4. User Interface

4.4.1. Buzzer

A monotone buzzer is used to show the "Card Insertion" and "Card Removal" events.

Events	Buzzer
1. The reader is powered up and successfully initialized.	Веер
2. Card Insertion Event (ICC or PICC)	Веер
3. Card Removal Event (ICC or PICC)	Веер

Table 2: Buzzer Event

4.4.2. LED

The LEDs are used for showing the state of the contact and contactless interfaces. The Red LED is used for showing PICC status and Green LED for ICC.

	Reader States	Red LED PICC Indicator	Green LED ICC Indicator
1.	No PICC found or PICC is available but not activated.	A single pulse per ~ 5 seconds	
2.	PICC is available and activated.	ON	
3.	PICC is operating.	Blinking	
4.	ICC is available and activated.		ON
5.	ICC is unavailable or inactive.		OFF
6.	ICC is operating.		Blinking

Table 3: LED Indicator

5.0. Software Design

5.1. Contact Smart Card Protocol

5.1.1. Memory Card – 1/2/4/8/16 kilobits I2C Card

5.1.1.1. Select card type

This command powers down/up the selected card in the reader, and then performs a card reset after.

Command

Command	Class	INS	P1	P2	Lc	Card Type
Select Card Type	FFh	A4h	00h	00h	01h	01h

Response

Response	Data	Data Out		
Result	SW1	SW2		

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.1.2. Select page size

This command chooses the page size to read in the card. The default value is an 8-byte page write. It resets to the default value whenever the card is removed or the reader is turned off.

Command

Command	Class	INS	P1	P2	Lc	Page Size
Select Page Size	FFh	01h	00h	00h	01h	

Where:

Page Size

03h = 8-byte page write

(1 byte)

04h = 16-byte page write

- 05h = 32-byte page write
- 06h = 64-byte page write
- 07h = 128-byte page write

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.1.3. Read memory card

This command reads the memory card's content from a specified address.

Command

Command	Class	INS	Byte Address		MEM L			
Command	01855		MSB	LSB				
Read Memory Card	FFh	B0h						
Where:								
Byte Address	(2 bytes)							
	Memory address location of the memory care (1 byte)							
MEM_L								
Length of data to be read from the mem								

Response

Response	Byte 1	 	Byte N	SW1	SW2
Result					

Where:

Byte (1N)	Data read from memory card.
SW1 SW2	= 90 00h if the operation is completed successfully.

Page 10 of 93

5.1.1.4. Write memory card

This command writes the memory card's content to a specified address.

Command

Command	Class	INS	Byte A	ddress	MEM_L	Byte 1	ə1		Byte N
Command	01055	INO	MSB	LSB		Бугет			Byle N
Write Memory Card	FFh	D0h							
Where:									
Byte Address	;	(2 bytes)							
		Memory address location of the memory card							
MEM_L		(1 byte)							
	Length of data to be read from the memory card								
Byte (1N)		Data to be written to the memory card.							

Response

Response	Data Out		
Result	SW1	SW2	

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

Page 11 of 93

5.1.2. Memory Card – 32/64/128/256/512/1024 kbits I2C Card

5.1.2.1. Select card type

This command powers down/up the selected card in the reader, and then performs a card reset after.

Command

Command	Class	INS	P1	P2	Lc	Card Type
Select Card Type	FFh	A4h	00h	00h	01h	02h

Response

Response	Data Out		
Result	SW1	SW2	

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.2.2. Select page size

This command chooses the page size to read in the card. The default value is an 8-byte page write. It resets to the default value whenever the card is removed or the reader is turned off.

Command

Command (Class	INS	P1	P2	Lc	Page Size
Select Page Size	FFh	01h	00h	00h	01h	

Where:

Page Size	(1 byte)				
	03h = 8-byte page write				
	04h = 16-byte page write				
	05h = 32-byte page write				
	06h = 64-byte page write				
	07h = 128-byte page write				

Response

Response	Data Out		
Result	SW1	SW2	

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

Page 12 of 93

5.1.2.3. Read memory card

This command reads the memory card's content from a specified address.

Command

0			Byte A	ddress			
Command	Class	INS	MSB	LSB	addressing =		
Read Memory Card	FFh						
Where:							
INS	(1 byte)						
	B0h = For 32, 64, 128, 256, 512 kbit I2C card						
	1011 000*b; where * is the MSB of the 17 bit addressing = For 1 kbit I2C card						
Byte Address	(2 bytes)						
	Memory address location of the memory card						
MEM_L	(1 byte)						
	Length of da	ata to be rea	ad from the	memory ca	ard		

Response

Response	Byte 1	 	Byte N	SW1	SW2
Result					

Where:

Byte (1...N) Data read from memory card.

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.2.4. Write memory card

This command writes the memory card's content to a specified address.

Command

Command	Class	INC	Byte Address			Durte 4	Byte 1		Dute N
Command	Class	INS	MSB	LSB	MEM_L	 		Byte N	
Write Memory Card	FFh								

Where:

INS

(1 byte)

D0h = For 32, 64, 128, 256, 512 kbit I2C card

1101 000*b; where * is the MSB of the 17 bit addressing = For 1024 kilobit I2C card

Page 13 of 93

Byte Address	(2 bytes)
	Memory address location of the memory card
MEM_L	(1 Byte)
	Length of data to be read from the memory card
Byte (1…N)	Data to be written to the memory card.

Response

Response	Data Out			
Result	SW1	SW2		

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

Page 14 of 93

5.1.3. Memory Card – ATMEL AT88SC153

5.1.3.1. Select card type

This command powers down/up the selected card inserted in the card reader and performs a card reset. It will also select the page size to be an 8-byte page write.

Command

Pseudo-APDU								
Command	Class	INS	P1	P2	Lc	Card Type		
Select Card Type	FFh	A4h	00h	00h	01h	03h		

Response

Response	Data Out			
Result	SW1	SW2		

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.3.2. Read memory card

This command will read the Memory Card's Content from specified address.

Command

Pseudo-APDU										
Command	Class	INS	P1	Byte Address	MEM_L					
Read Memory Card	FFh		00h							
Where:										
INS	(1 byte)									
	For reading zone 00b, INS = B0h									
	For reading zone 01b, $INS = B1h$									
	For	reading	zone 1	0b, INS = B2h						
	For	reading	zone 1	1b, INS = B3h						
	For	reading	fuse, II	NS = B4h						
Byte Address	(1 by	yte)								
	Memory address location of the memory card.									
MEM_L	(1 by	yte)								
	Lenç	gth of da	ita to b	e read from the m	emory card.					

Response

Response	Byte 1	 	Byte N	SW1	SW2
Result					
Where:					

Byte (1...N)Data read from memory card.SW1 SW2= 90 00h if the operation is completed successfully.

5.1.3.3. Write memory card

This command writes the memory card's content from a specified address.

Command

Pseudo-APDU									
Command	Class	INS	P1	Byte MEM_L Byte 1		Byte 1			Byte N
Write Memory Card	FFh		00h						
Where:									
INS		(1 t	oyte)						
		For	reading zone	00b, INS = D	0h				
		For	reading zone	01b, INS = D	1h				
		For	reading zone	10b, INS = D	2h				
		For	reading zone	11b, INS = D	3h				
		For	reading fuse,	INS = D4h					
Byte Addre	ss	(1 t	oyte)						
		Me	mory address	location of the	e memory	card.			
MEM_L		(1 byte)							
		Ler	igth of data to	be written to	the memo	ry card			
Byte (1…N)	Length of data to be written to the memory cardByte (1N)Data to be written to the memory card.								

Response

Response	Data Out			
Result	SW1	SW2		

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

Page 16 of 93

5.1.3.4. Verify password

This command verifies whether the memory card's password matches the user's entered PIN.

Command

Pseudo-APDU									
Command	Class	INS	P1	P2	Lc	RP	PW (0)	PW (1)	PW (2)
Verify Password	FFh	20h	00h		03h				

Where:

PW (0), PW (1), PW (2) = Password to be sent to memory card.

P2

(1 Byte)

= 0000 00r pb

Where the two bits "r p" indicates the password to compare

r = 0: Write password,

r = 1: Read password,

p = Password set number

r p = 01b for the secure code.

Response

Response	Data Out			
Result	SW1	ErrorCnt		

Where:

ErrorCnt

SW1 =	90h
-------	-----

(1 byte)

= Error Counter

FFh indicates the verification is correct. 00h indicates the password is locked (exceed maximum number of retries). Other values indicate the current verification is failed.

Page 17 of 93

5.1.3.5. Initialize authentication

This command initializes the memory card's authentication.

Command

Pseudo-APDU									
Command	Class	INS	P1	P2	Lc	Q (0)	Q (1)		Q (7)
Initialize Authentication	FFh	84h	00h	00h	08h				

Where:

Q (0...7) (8 bytes)

= Host random number

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.3.6. Verify authentication

This command verifies the memory card's authentication.

Command

Pseudo-APDU									
Command	Class	INS	P1	P2	Lc	Ch (0)	Ch (1)		Ch (7)
Verify Authentication	FFh	82h	00h	00h	08h				

Where:

Ch (0...7) (8 bytes)

= Host challenge

Response

Response	Data Out				
Result	SW1	SW2			

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

Page 18 of 93

5.1.4. Memory Card – ATMEL AT88SC1608

5.1.4.1. Select card type

This command powers down/up the selected card inserted in the card reader and performs a card reset. It also selects the page size to be a 16-byte page write.

Command

Pseudo-APDU								
Command	Class INS P1 P2 Lc Card Typ							
Select Card Type	FFh	A4h	00h	00h	01h	04h		

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.4.2. Read memory card

This command reads the memory card's content from a specified address.

Command

		Pse	udo-APDU		
Command	Class	INS	Zone Address	Byte Address	MEM_L
Read Memory Card	FFh				
Where:					
INS	(1 b	yte)			
	For	reading	user zone, INS = B	0h	
	For	reading	configuration zone	or reading fuse, IN	IS = B1h
Zone Address	(1 b	yte)			
	= 00	000 A10) A9 A8b, where A1	10 is the MSB of z	one address
	** do	on't care	for reading fuse		
Byte Address	(1 b	yte)			
		7 A6 A5 hory car	A4 A3 A2 A1 A0b d	is the memory ad	dress locatio
	For	reading	fuse, Byte Address	= 1000 0000b	
MEM_L	(1 b	yte)			
	Leng	gth of da	ita to be read from	the memory card.	

Advanced Card Systems Ltd. Card & Reader Technologies

Response

Response	Byte 1	 	Byte N	SW1	SW2
Result					

Where:

Byte (1...N) Data read from memory card.

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.4.3. Write to memory card

This command writes the memory card's content from a specified address.

Command

			Pseudo-APDU								
Command	Class	INS	Zone AddressByte AddressMEM_LByte 1Byte								
Write Memory Card	FFh										
Where:											
INS		(1 k	oyte)								
		For	reading user	zone, INS = I	00h						
		For	For reading configuration zone or reading fuse, INS = D1h								
Zone Addre	ess	(1 t	oyte)								
		= 0	0000 A10 A9	A8b, where A	10 is the M	ISB of zor	ne add	ress			
		** C	on't care for r	eading fuse							
Byte Addre	ess	(1 t	oyte)								
			7 A6 A5 A4 A mory card	A3 A2 A1 A0b	is the me	mory addr	ess lo	cation	of the		
		For	For reading fuse, Byte Address = 1000 0000b								
MEM_L		(1 t	(1 byte)								
		Ler	igth of data to	be written to	the memo	ry card					
Byte (1N))	Dat	a to be writter	n to the memo	ory card.						

Response

Response	Data Out				
Result	SW1	SW2			

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

Page 20 of 93

5.1.4.4. Verify password

This command verifies if the memory card's password matches the user's entered PIN.

Command

Pseudo-APDU									
Command	Class	INS	P1	P2	Lc	RP	PW (0)	PW (1)	PW (2)
Verify Password	FFh	20h	00h	00h	04h				

Where:

PW (0), PW (1), PW (2) = Password to be sent to memory card.

RP

(1 byte)

= 0000 r p2 p1 p0b

Where the two bits "r p2 p1 p0" indicate the password to compare

r = 0 : Write password,

r = 1: Read password,

p2 p1 p0 = Password set number

r p2 p1 p0 = 0111b for the secure code.

Response

Response	Data Out				
Result	SW1	ErrorCnt			
Where:					

Where:

SW1	= 90h	
ErrorCnt	(1 byte)	

= Error Counter

FFh indicates the verification is correct. 00h indicates the password is locked (exceed maximum number of retries). Other values indicate the current verification is failed.

5.1.4.5. Initialize authentication

This command initializes the memory card's authentication.

(8 bytes)

Command

Pseudo-APDU									
Command	Class	INS	P1	P2	Lc	Q (0)	Q (1)		Q (7)
Initialize Authentication	FFh	84h	00h	00h	08h				

Where:

Q (0...7)

= Host random number

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.4.6. Verify authentication

This command verifies the memory card's authentication.

Command

Pseudo-APDU									
Command Class INS P1 P2 Lc Ch (0) Ch (1) Ch								Ch (7)	
Verify Authentication	FFh	82h	00h	00h	08h				

Where:

Ch (0...7)

(8 bytes)

= Host challenge

Response

Response	Data Out					
Result	SW1	SW2				

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

Page 22 of 93

5.1.5. Memory Card – SLE4418/SLE4428/SLE5518/SLE5528

5.1.5.1. Select card type

This command powers down/up the selected card in the reader, and then performs a card reset after.

Command

Command	Class	INS	P1	P2	Lc	Card Type
Select Card Type	FFh	A4h	00h	00h	01h	05h

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.5.2. Read memory card

This command reads the memory card's content from a specified address.

Command

Command	Class	INIC	Byte A	ddress		
Command	Class	INS	MSB	LSB	MEM_L	
Read Memory Card	FFh	B0h				
Where:						
MSB Byte Address	(1 by	te)				
	= 000 card	00 00 A	9 A8b is	the mem	ory addre	ss location of the memory
LSB Byte Address	(1 by	ie)				
		A6 A5 A ory card	4 A3 A2	A1 A0b is	s the mem	ory address location of the
MEM_L	(1 by	te)				
	Leng	th of data	a to be re	ad from tl	he memory	/ card

Response

Response	Byte 1			Byte N	SW1	SW2				
Result										
Where:										
Byte (1	N)	Data read from memory card.								
SW1 SW2	2	= 90 (00h if 1	the operati	on is cor	npleted s				

Page 23 of 93

5.1.5.3. Read presentation error counter memory card (for SLE4428 and SLE5528 only)

This command reads the presentation error counter for the secret code.

Command

Command	Class	INS	P1	P2	MEM_L
Read Presentation Error Counter	FFh	B1h	00h	00h	03h

Response

Response	ErrCnt	Dummy 1	Dummy 2	SW1	SW2
Result					
Where:					
ErrCnt		(1 byte)			
		The value	of the preser	ntation e	rror cour
		FFh =	indicates the	verificat	tion is co
			indicates the er of retries)	passwo	ord is loc
		Other val	ues indicate th	ne verific	ation fai
Dummy 1	, Dummy	2 (2 bytes)			
		Dummy d	lata read from	the carc	ł
SW1 SW2		= 90 00h	if the operatio	n is com	pleted s

5.1.5.4. Read protection bit

This command reads the protection bit.

Command

Command	Class	INS	Byte A	ddress	MEM L					
Command	Class		MSB	LSB						
Read Protection Bit	FFh	B2h								
Where:										
MSB Byte Addres	s (1 by	te)								
	The	memory	address I	location o	of the mem					
	= 000	00 00 A9	A8b							
LSB Byte Address	s (1 by	te)								
	The r	memory	address I	location o	of the mem					
	= A7	A6 A5 A	4 A3 A2	A1 A0b						

Page 24 of 93

MEM_L

(1 byte) Length of protection bits read from the card, in multiples of 8 bits. The maximum value is 32.

 $MEM_L = 1 + INT$ ((number of bits - 1)/8)

For example, to read 8 protection bits starting from memory 0010h, the following pseudo-APDU should be issued:

FF B1 00 10 01h

Response

Response	PROT 1	 	PROT L	SW1	SW2
Result					
Where:					

PROT (1L)	Bytes containing the protection bits.
SW1 SW2	= 90 00h if the operation is completed successfully.

The arrangement of the protection bits in the PROT bytes is as follows:

			PRC	DT 1							PRC	T 2								
P8	P7	P6	P5	P4	P3	P2	P1	P16	P15	P14	P13	P12	P11	P10	P9	 	 	 	P18	P17

Where:

Px is the protection bit of byte *x* in response data:

0 = byte is write protected

1 = byte can be written

5.1.5.5. Write memory card

This command writes the memory card's content to a specified address.

Command

	01		Byte Ad	dress		Deter			Deste N
Command	Class	INS	MSB	LSB	MEM_L	Byte 1	•••	•••	Byte N
Write Memory Card	FFh	D0h							
Where:									
MSB Byte Addres	ss (1	byte)							
		0000 (Ird	00 A9 A8t	o is the	memory a	address lo	ocatio	on of t	the memory
LSB Byte Addres	ss (1	byte)							
		A7 A6 emory		A2 A1 .	A0b is the	memory	addro	ess loo	cation of the
MEM_L	(1	byte)							
	Le	ength o	f data to b	e writter	n to the me	mory car	d		

Page 25 of 93

Byte (1...N) Data to be written to the memory card.

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.5.6. Write protection memory card

Each byte specified in the command is compared with the bytes stored in the specific address, and if the data matches, the corresponding protection bit is irreversibly programmed to '0'.

Command

Command	Class	INS	Byte Ac	ldress		Duto 1			Puto N
Command	Class	INS	MSB	LSB	MEM_L	Byte 1	•••		Byte N
Write Protection Memory Card	FFh	D1h							
Where:									
MSB Byte Add	ress	(1 byte)							
		= 0000 card	00 A9 A8	3b is the	e memory	address I	ocatio	n of	the memor
LSB Byte Add	ress	(1 byte)							
		= A7 A6 memory		3 A2 A1	A0b is the	e memory	addre	ss lo	cation of th
MEM_L		(1 byte)							
		Length o	of data to	be writte	en to the m	emory car	ď		
Byte (1…N)		Address	. Byte 1 is	s compa		e data at	Byte A		at the Byt ss; Byte N i

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

Page 26 of 93

5.1.5.7. Present code memory card (for SLE44428 and SLE5528 only)

This command submits the secret code to the memory card to enable the write operation with the SLE4428 and SLE5528 card. The following actions are executed:

- 1. Search a '1' bit in the presentation error counter and write the bit '0'.
- 2. Present the specified code to the card.
- 3. Try to erase the presentation error counter.

Command

Command	Class	INS	P1	P2	MEM_L	Co	ode
Command	Class	INS		F2		Byte 1	Byte 2
Present Code Memory Card	FFh	20h	00h	00h	02h		

Where:

Code (3 bytes)

Secret code (PIN)

Response

Response	Data	Out
Result	90h	ErrorCnt

Where:

ErrorCnt

(1 byte)

Error Counter

FFh = indicates the verification is correct.

00h = indicates the password is locked (exceeding maximum number of retries).

Other values indicate the verification failed.

Page 27 of 93

5.1.6. Memory Card – SLE4432/SLE4442/SLE5532/SLE5542

5.1.6.1. Select card type

This command powers down/up the selected card in the reader, and then performs a card reset after.

Command

Command	Class	INS	P1	P2	Lc	Card Type
Select Card Type	FFh	A4h	00h	00h	01h	06h

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2

= 90 00h if the operation is completed successfully

5.1.6.2. Read memory card

This command reads the memory card's content from a specified address.

Command

Command	Class	INS	P 1	Byte Address	MEM_L				
Read Memory Card	FFh	B0h	00h						
Where:									
Byte Address	(1 byte)								
	=A7 A6 A5 A4 A3 A2 A1 A0b is the memory address location of th memory card								
MEM_L	(1 b)	yte)							
	Length of data to be read from the memory card								

Response

Response	Byte 1			Byte N	PROT1	PROT2	PROT3	PROT4	SW1	SW2			
Result													
Where:													
Byte (1	N)		Data read from memory card.										
PROT (1.	4)		Bytes containing the protections bits from protection.										
SW1 SW2	2		= 90 00h if the operation is completed successfully.										
SW1 SW2	2		= 90 00h if the operation is completed successfully.										

Page 28 of 93

The arrangement of the protection bits in the PROT bytes is as follows:

	PROT 1					PROT 2																	
P8	P7	P6	P5	P4	P3	P2	P1	P16	P15	P14	P13	P12	P11	P10	P9							P18	P17

Where:

Px is the protection bit of byte *x* in response data:

0 = byte is write protected

1 = byte can be written

5.1.6.3. Read presentation error counter memory card (for SLE4442 and SLE5542 only)

This command reads the presentation error counter for the secret code.

Command

Command	Class	INS	P 1	P2	MEM_L
Read Presentation Error Counter	FFh	B1h	00h	00h	04h

Response

Response	ErrCnt	Dummy 1	Dummy 2	Dummy 3	SW1	SW2
Result						
Where:						
ErrCnt		(1 byte)				
		The value	of the preser	ntation error c	ounter	
		07h = indi	icates the veri	fication is cor	rect.	
		00h = ind number o	dicates the pa f retries).	assword is lo	ocked (e	exceedin
		Other valu	ues indicate th	ne verification	failed.	
Dummy 1	, Dummy	2, Dummy 3	(3 bytes)			
			Dummy da	ta read from t	he card	
SW1 SW2	2	= 90 00h	if the operatio	n is complete	d succe	ssfully.

Page 29 of 93

5.1.6.4. Read Protection Bit

This command reads the protection bits for the first 32 bytes.

Command

Command	Class	INS	P1	P2	MEM_L
Read Protection Bit	FFh	B2h	00h	00h	04h

Response

Response	PROT 1	PROT 2	PROT 3	PROT 4	SW1	SW2
Result						

Where:

PROT (14)	Bytes containing the protection bits.
SW1 SW2	= 90 00h if the operation is completed successfully.

The arrangement of the protection bits in the PROT bytes is as follows:

P8 P7 P6 P5 P4 P3 P2 P1 P16 P15 P14 P13 P12 P11 P10 P9		PROT 1						PROT 2																
Px protection bit of bytes in the response data:	P8	P7	P6	P5	P4	P3	P2	P1	P16	P15	P14	P13	P12	P11	P10	P9					••		P18	P17
		Where:																						
0 = byte is write protected		Px protection bit of bytes in the response data:																						

1 = byte can be written

5.1.6.5. Write memory card

This command writes the memory card's content to a specified address.

Command

Command	Class	INS	P1	Byte Address	MEM_L	Byte 1			Byte N		
Write Memory Card	FFh	D0h	00h								
Where:											
Byte Address	(1	byte)									
	= A7 A6 A5 A4 A3 A2 A1 A0b is the memory address location of the memory card										
MEM_L	(1	byte)									
	Le	ngth o	f data	to be writter	n to the me	emory c	ard				
Byte (1N)	Da	ata to b	e writt	en to the m	emory care	d.					

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.6.6. Write protection memory card

Each of the byte specified in the command is compared with the bytes stored in the specific address and if the data matches, the corresponding protection bit is irreversibly programmed to '0'.

Command

Command	Class	INS	P 1	Byte Address	MEM_L	Byte 1			Byte N				
Write Protection Memory Card	FFh	D1h	00h										
Where:													
Byte Address	(*	(1 byte)											
	= 000A4 A3 A2 A1b (00h – 1Fh) is the protection memory addres location of the memory card												
MEM_L	(1 byte)												
	L	Length of data to be written to the memory card											
Byte (1N)	A	ddress	s. Byte	es compared with the data in the card starting at the Byte Byte 1 is compared with the data at Byte Address; Byte N is with the data at Byte Address + N – 1.									

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2

= 90 00h if the operation is completed successfully.

Page 31 of 93

5.1.6.7. Present code memory card (for SLE4442 and SLE5542 only)

This command submits the secret code to the memory card to enable the write operation with the SLE4442 and SLE5542 card. The following actions are executed:

- 1. Search a '1' bit in the presentation error counter and write bit '0'.
- 2. Present the specified code to the card.
- 3. Try to erase the presentation error counter.

Command

Command	mand Class INS P1 P2 MEM L	Code						
Command	Class	INS	FI	-1 -12		Byte 1	Byte 2	Byte 3
Present Code Memory Card	FFh	20h	00h	00h	03h			

Where:

Code

(3 bytes) Secret code (PIN)

Response

Response	Data Out				
Result	SW1	ErrorCnt			

Where:

ErrorCnt (1 byte)

Error Counter

07h = indicates the verification is correct.

00h = indicates the password is locked (exceeding the maximum number of retries).

Other values indicate the verification failed.

Page 32 of 93

5.1.6.8. Change code memory card (for SLE4442 and SLE5542 only)

This command writes the specified data as the new secret code in the card. The existing secret code must be presented to the card using the "Present Code" command prior to the execution of this command.

Command

Command	Command Class INS P1 P2	D 2	MEM_L	Code				
Command		F2		Byte 1	Byte 2	Byte 3		
Change Code Memory Card	FFh	D2h	00h	01h	03h			

Where:

Code

Secret code (PIN)

(3 bytes)

Response

Response	Data	Out
Result	SW1	SW2
Result	3001	302

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

Page 33 of 93

5.1.7. Memory Card – SLE4406/SLE4436/SLE5536/SLE6636

5.1.7.1. Select card type

This command powers down/up the selected card in the reader, and then performs a card reset after.

Command

Command	Class	INS	P1	P2	Lc	Card Type
Select Card Type	FFh	A4h	00h	00h	01h	07h

Response

Response	Data Out				
Result	SW1	SW2			

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.7.2. Read Memory Card

This command reads the memory card's content from a specified address.

Command

Command	Class	INS	P1	Byte Address	MEM_L			
Read Memory Card	FFh	B0h	00h					
Where:								
Byte Address	(1 byte)							
	Memory address location of the memory card (1 byte) Length of data to be read from the memory card							
MEM_L								

Response

Response	Byte 1	 	Byte N	SW1	SW2
Result					

Where:

Byte (1N)	Data read from memory card.
SW1 SW2	= 90 00h if the operation is completed successfully.

Page 34 of 93

Advanced Card Systems Ltd.

Card & Reader Technologies

5.1.7.3. Write one byte memory card

This command is used to write one byte to the specified address of the inserted card. The byte is written to the card with LSB first, i.e. the bit card address 0 is regarded as the LSB of byte 0.

Four different *write* modes are available for this card type, which are distinguished by a flag in the command data field:

a. Write

The byte value specified in the command is written to the specified address. This command can be used for writing personalization data and counter values to the card.

b. Write with carry

The byte value specified in the command is written to the specified address and the command is sent to the card to erase the next lower counter stage. This mode can therefore only be used for updating the counter value in the card.

c. Write with backup enabled (for SLE4436, SLE5536 and SLE6636 only)

The byte value specified in the command is written to the specified address. This command can be used for writing personalization data and counter values to the card. Backup bit is enabled to prevent data loss when card tearing occurs.

d. Write with carry and backup enabled (SLE4436, SLE5536 and SLE6636 only)

The byte value specified in the command is written to the specified address and the command is sent to the card to erase the next lower counter stage. This mode can therefore only be used for updating the counter value in the card. Backup bit is enabled to prevent data loss when card tearing occurs.

With all write modes, the byte at the specified card address is not erased prior to the write operation and hence, memory bits can only be programmed from '1' to '0'.

The backup mode available in the SLE4436 and SLE5536 card can be enabled or disabled in the write operation.

Command	Class	INS	P1	Byte Address	MEM_L	Mode	Byte
Read Memory Card	FFh	D0h	00h		02h		
Vhere:							
Byte Address	(1	oyte)					
	Me	mory a	ddres	s location of the n	nemory ca	rd	
Mode	(1	oyte)					
	Sp	ecifies	the wr	ite mode and bac	kup option	1	
	00	ר = Wri	te.				
	011	ר = Wri	te with	i carry.			
		n = W E6636		vith backup enal	bled (for	SLE4436	, SLE5
				ith carry and w LE6636 only).	ith backup	o enable	d (for S
Byte	(1	oyte)					
	Byt	e value	e to be	written to the ca	rd		

Command

Page 35 of 93

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.7.4. Present code memory card

This command submits the secret code to the memory card to enable card personalization mode. The following actions are executed:

- 1. Search a '1' bit in the presentation error counter and write bit '0'.
- 2. Present the specified code to the card.

Command

Command	Class	INS	P1	1 P2	MEM L	Code					
Commanu	Class	INS	FI	F2		Addr	Byte 1	Byte 2	Byte 3		
Present Code Memory Card	FFh	20h	00h	00h	04h	09h					
Where:											
Addr	(1 byte)										
	Byte add	ress of	the pre	esentat	ion counte	r in the o	card				
Code	(3 bytes)										
	Secret co	ode (PII	V)								

Response

Response	Data Out	
Result	SW1	SW2

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

Page 36 of 93

5.1.7.5. Authenticate memory card (for SLE4436, SLE5536 and SLE6636 only)

This command reads the authentication certificate from the card. The following actions are executed:

- 1. Select Key 1 or Key 2 in the card as specified in the command.
- 2. Present the challenge data specified in the command to the card.
- 3. Generate the specified number of CLK pulses for each bit authentication data computed by the card.
- 4. Read 16 bits of authentication data from the card.
- 5. Reset the card to normal operation mode.

The authentication is performed in two steps. The first step is to send the Authentication Certificate to the card. The second step is to get back two bytes of authentication data calculated by the card.

Step 1: Send authentication certificate to the card.

Command

Commond	Class	INS	D 4	D2		Code				
Command	Class	INS	P1	P2	MEM_L	Key	CLK_CNT	Byte 1		Byte 6
Send Authentication Certificate	FFh	84h	00h	00h	08h					
Where:										
Key			(1 byte	e)						
			Key to be used for the computation of the authentication certificate							rtificate
			00h = Key 1 with no cipher block chaining.							
			01h =	Key 2	with no cip	oher blo	ock chaining.			
			80h = only).	Key ′	1 with ciph	er bloc	k chaining (f	or SLL55	36 and	SLE6636
			81h = only).	Key 2	2 with ciph	er bloc	k chaining (f	or SLL55	36 and	SLE6636
CLK_CN	т		(1 byte	e)						
			Number of CLK pulses to be supplied to the card for the computat of each bit of the authentication certificate. Typical value is clocks (A0h).							
Byte (1	.6)		Card challenge data.							

Response

Response	SW1	SW2
Result	61h	02h

Step 2: Get the authentication data (Get Response).

Command

Command	Class	INS	P 1	P2	MEM_L
Get Authentication Data	FFh	C0h	00h	00h	02h

Response

Response	Cert	SW1	SW2
Result			
Where:			
Cert		(2 bytes)	
		16 bits o 1 is the f	
SW1 SW2		= 90 00h	if the op

Page 38 of 93

5.1.8. Memory Card – SLE4404

5.1.8.1. Select card type

This command powers down/up the selected card in the reader, and then performs a card reset after.

Command

Command	Class	INS	P1	P2	Lc	Card Type
Select Card Type	FFh	A4h	00h	00h	01h	08h

Response

Response	Data Out				
Result	SW1	SW2			

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.8.2. Read memory card

This command reads the memory card's content from a specified address.

Command

Command	Class	INS	P1	Byte Address	MEM_L
Read Memory Card	FFh	B0h	00h		
Where:					
Byte Address	(1 b <u>)</u>	yte)			
	Men	nory ad	dress l	ocation of the memo	ory card
MEM_L	(1 b <u>y</u>	yte)			
	Lenę	gth of d	ata to b	be read from the me	emory card

Response

Response	Byte 1			Byte N	SW1	SW2		
Result								
Where:								
Byte (1	.N)		Data read from memory card.					
SW1 SW	2	:	= 90 00	Oh if the op	peration	is comp		

Page 39 of 93

5.1.8.3. Write memory card

This command writes the memory card's content to a specified address. The byte is written to the card with LSB first, i.e. the bit at card address 0 is regarded as the LSB of byte 0.

The byte at the specified card address is not erased prior to the write operation and hence, memory bits can only be programmed from '1' to '0'.

Command

Command	Class	INS	P1	Byte Address	MEM_L	Byte 1			Byte N	
Write Memory Card	FFh	D0h	00h							
Where:										
Byte Address	(1	(1 byte)								
	М	Memory address location of the memory card								
MEM_L	(1 byte)									
	Le	Length of data to be written to the memory card								
Byte (1N)	Data to be written to the memory card.									

Response

Response	Data Out				
Result	SW1	SW2			

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.8.4. Erase scratch pad memory card

This command erases the data of the scratch pad memory of the inserted card. All memory bits inside the scratch pad memory will be programmed to the state of '1'.

Command

Command	Class	INS	P1	Byte Address	MEM_L
Erase Scratch Pad	FFh	D2h	00h		00h

Where:

Byte Address (1 byte)

mory byte address loc

Memory byte address location of the scratch pad. Typical value is 02h.

Page 40 of 93

Response

Response	Data Out				
Result	SW1	SW2			

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.8.5. Verify user code

This command submits the User Code (2 bytes) to the inserted card. The User Code enables access to the memory of the card.

The following actions are executed:

- 1. Present the specified code to the card.
- 2. Search a '1' bit in the presentation error counter and write the bit '0'.
- 3. Erase the presentation error counter. The Error User Counter can be erased when the submitted code is correct.

Command

Command	Class	INS	Error Counter	Byte	MEM_L	Co	de
Command	Class	INS	LEN	Address		Byte 1	Byte 2
Verify User Code	FFh	20h	04h	08h	02h		

Where:

Error Counter LEN	(1 byte)
	Length of presentation error counter in bits
Byte Address	(1 byte)
	Byte address of the key in the card
Code	(1 byte)
	User Code

Response

Response	Data Out			
Result	SW1	SW2		

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

= 63 00h if there are no more retries left.

Note: After SW1 SW2 = 90 00h has been received, read back the User Error Counter to check whether the Verify_User_Code is correct. If the User Error Counter is erased and is equal to 'FFh', the previous verification is successful.

Page 41 of 93

5.1.8.6. Verify memory code

This command submits memory code (4 bytes) to the inserted card. The memory code is used to authorize the reloading of the user memory, together with the User Code.

The following actions are executed:

- 1. Present the specified code to the card.
- 2. Search a '1' bit in the presentation error counter and write the bit to '0'.
- 3. Erase the presentation error counter.

Note: The Memory Error Counter cannot be erased.

Command

Command	Class	INS	Error Counter	Byte	MEM_L	Code				
Command Cia	01055		LEN	Address		Byte 1	Byte 2	Byte 3	Byte 4	
Verify Memory Code	FFh	20h	40h	28h	04h					

Where:

Error Counter LEN	(1 byte)
	Length of presentation error counter in bits
Byte Address	(1 byte)
	Byte address of the key in the card
Code	(4 bytes)
	Memory Code

Response

Response	Data	Data Out	
Result	SW1	SW2	
Where:			
SW1 SW2	2	= 9	
		= 6	

Note: After SW1 SW2 = 90 00h has been received, read back the User Error Counter to check whether the Verify Memory Code is correct. If all data in Application Area is erased and is equal to 'FFh', the previous verification is successful.

Page 42 of 93

5.1.9. Memory Card – AT88SC101/AT88SC102/AT88SC1003

5.1.9.1. Select card type

This command powers down and up the selected card inserted in the card reader and performs a card reset.

Command

Pseudo-APDU								
Command	INS	P1	P2	Lc	Card Type			
Select Card Type	FFh	A4h	00h	00h	01h	09h		

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2

= 90 00h if the operation is completed successfully.

5.1.9.2. Read Memory Card

This command reads the memory card's content from specified address.

Command

Pseudo-APDU										
Command	Class	Class INS P1 Byte Address		MEM_L						
Read Memory Card	FFh	B0h	00h							
Where:										
Byte Address	(1 b <u>)</u>	yte)								
	Men	nory add	lress loo	cation of the memo	ory card.					
MEM_L	(1 byte)									
	Length of data to be read from the memory ca									

Response

Response	Byte 1	 	Byte N	SW1	SW2
Result					
Where:					

Byte (1…N)	Data read from memory card.
SW1 SW2	= 90 00h if the operation is completed successfully.

Page 43 of 93

5.1.9.3. Write Memory Card

This command writes data to the specified address of the inserted card. The byte is written to the card with LSB first, i.e., the bit at card address 0 is regarded as the LSB of byte 0.

The byte at the specified card address is not erased prior to the write operation and, hence, memory bits can only be programmed from '1' to '0'.

Command

Pseudo-APDU										
Command	Class	INS	P1	Byte Address	MEM_L	Byte 1			Byte N	
Write Memory Card	FFh	D0h	00h							
Where:										
Byte Addre	SS	(1 t	oyte)							

	Memory address location of the memory card.
MEM_L	(1 byte)
	Length of data to be written to the memory card
Byte (1N)	Byte value to be written to the card.

Response

Response	Data Out				
Result	SW1	SW2			

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.9.4. Erase non-application zone

This command erases the data in non-application zones. The EEPROM memory is organized into 16 bit words. Although erases are performed on single bits the ERASE operation clears an entire word in the memory. Therefore, performing an Erase on any bit in the word will clear All 16 bits of that word to the state of '1'.

To erase Error Counter or the data in Application Zones, please refer to:

- Erase Application Zone With Erase command as specified
- Erase Application Zone With Write and Erase command as specified
- Verify Security Code commands as specified

Page 44 of 93

Advanced Card Systems Ltd.

Card & Reader Technologies

Command

Pseudo-APDU								
Command	Class	INS	P1	Byte Address	MEM_L			
Erase Non-Application Zone	FFh	D2h	00h		00h			

Where:

Byte Address

(1 byte)

Memory byte address location of the word to be erased.

Response

Response	Data Out			
Result	SW1	SW2		

Where:

SW1 SW2 = 90 00h if the operation is completed successfully.

5.1.9.5. Erase Application Zone with Erase

This command can be used in the following cases:

- AT88SC101: To erase the data in Application Zone with EC Function Disabled
- AT88SC102: To erase the data in Application Zone 1
- AT88SC102: To erase the data in Application Zone 2 with EC2 Function Disabled
- AT88SC1003: To erase the data in Application Zone 1
- AT88SC1003: To erase the data in Application Zone 2 with EC2 Function Disabled
- AT88SC1003: To erase the data in Application Zone 3

The following actions are executed for this command:

- 1. Present the specified code to the card.
- 2. Erase the presentation error counter. The data in corresponding Application Zone can be erased when the submitted code is correct.

Pseudo-APDU											
			Error	Byte	MEM_L	CODE					
Command	Class	INS	Counter LEN	Byte Address		Byte 1	Byte 2			Byte N	
Erase Application Zone with Erase	FFh	20h	00h								

Command

Where:

Error Counter LEN (*

(1 byte)

= Length of presentation error counter in bits. The value should be 00h always.

Advanced Card Systems Ltd.

Card & Reader Technologies

E	Byte Address	ress (1 byte)					
		= Byte address of the Application Zone Key in to the table below for the correct value.	the card. Please re	fer			
Ν	/IEM_L	(1 byte)					
		= Length of the Erase Key. Please refer to the table below for the correct value.					
C	CODE (1N)	= Erase Key					
		Cases	Byte Address	LEN			
	AT88SC101: Erase	Application Zone with EC function disabled	96h	04h			

Arobooron. Erase Application Zone with Eoruneiton disabled	5011	0411
AT88SC102: Erase Application Zone 1	56h	06h
AT88SC102: Erase Application Zone 2 with EC2 function disabled	9Ch	04h
AT88SC1003: Erase Application Zone 1	36h	06h
AT88SC1003: Erase Application Zone 2 with EC2 function disabled	5Ch	04h
AT88SC1003: Erase Application Zone 3	C0h	06h

Response

Response	Data	Out
Result	SW1	SW2
Where:		

SW1 SW2

= 90 00h if the operation is completed successfully.

Note: After SW1SW2 = 90 00h been received, read back the data in Application Zone can check whether the Erase Application Zone with Erase is correct. If all data in Application Zone is erased and equals to "FFh", the previous verification is success.

5.1.9.6. Erase Application Zone with Write and Erase

This command can be used in the following cases:

- AT88SC101: To erase the data in Application Zone with EC Function Enabled
- AT88SC102: To erase the data in Application Zone 2 with EC2 Function Enabled
- AT88SC1003: To erase the data in Application Zone 2 with EC2 Function Enabled

With EC or EC2 Function Enabled (that is, ECEN or EC2EN Fuse is unblown and in "1" state), the following actions are executed:

- 1. Present the specified code to the card
- 2. Search a '1' bit in the presentation error counter and write the bit to '0'
- 3. Erase the presentation error counter. The data in corresponding Application Zone can be erased when the submitted code is correct.

Advanced Card Systems Ltd. Card & Reader Technologies

Command

Pseudo-APDU										
			Error	Buto	Byte dress MEM_L	CODE				
Command	Class	INS	Counter LEN	Address		Byte 1	Byte 2	Byte 3	Byte 4	
Erase Application Zone with Write and Erase	FFh	20h	80h		04h					

Where:

Error Counter LEN	(1 byte)		
	= Length of prese 80h always.	ntation error counte	er in bits. The value should be
Byte Address	(1 byte)		
		the Application Zo for the correct value	ne Key in the card. Please refer
CODE	(4 bytes)		
	= Erase Key		
	Cases	Byte Address	
	AT88SC101	96h	
	AT88SC102	9Ch	
	AT88SC1003	5Ch	

Response

Response	Data	a Out
Result	SW1	SW2
Where:		
SW1 SW	2	= 9
		= 6

Note: After SW1SW2 = 90 00 has been received, read back the data in Application Zone can check whether the Erase Application Zone with Write and Erase is correct. If all data in Application Zone is erased and equals to "FFh", the previous verification is success.

5.1.9.7. Verify Security Code

This command submits Security Code (2 bytes) to the inserted card. Security Code is to enable the memory access of the card.

The following actions are executed:

- 1. Present the specified code to the card
- 2. Search a '1' bit in the presentation error counter and write the bit to '0'
- 3. Erase the presentation error counter. The Security Code Attempts Counter can be erased when the submitted code is correct.

Command

Pseudo-APDU										
Command	Class			Byte		CODE				
Commanu	and Class INS Error Counter LEN	Byte Address	MEM_L	Byte 1	Byte 2					
Verify Security Code	FFh	20h	08h	0Ah	02h					

Where:

Error Counter LEN	(1 byte)
	= Length of presentation error counter in bits.
Byte Address	(1 byte)
	= Byte address of the key in the card.
CODE	(2 bytes)
	= Security Code

Response

	Response	Data	Out
	Result	SW1	SW2
١	Nhere:		
	SW1 SW2		= 9
			= 6

Note: After SW1SW2 = 90 00h been received, read back the Security Code Attempts Counter (SCAC) can check whether the Verify User Code is correct. If SCAC is erased and equals to "FFh", the previous verification is success.

Page 48 of 93

5.1.9.8. Blow Fuse

This command blows the fuse of the inserted card. The fuse can be EC_EN Fuse, EC2EN Fuse, Issuer Fuse or Manufacturer's Fuse.

Note: The blowing of fuse is an irreversible process.

Command

Pseudo-APDU										
						CODE				
Command	Class	INS	Error Counter LEN	Byte Address	MEM_L	Fuse Bit Addr (High)	Fuse Bit Addr (Low)	State of FUS Pin	State of RST Pin	
Blown Fuse	FFh	05h	00h	00h	04h			01h	00h 01h	

Where:

Fuse Bit Addr	(2 bytes)
	= Bit address of the fuse. Please refer to the table below for the correct value.
State of FUS Pin	(1 byte)
	= State of the FUS pin. Should be 01h always.
State of RST Pin	(1 byte)
	= State of the RST pin. Please refer to below table for the correct value.

		Fuse Bit Addr (High)	Fuse Bit Addr (Low)	State of RST Pin
	Manufacturer Fuse	05h	80h	01h
AT88SC101	EC_EN Fuse	05h	C9h	01h
	Issuer Fuse	05h	E0h	01h
AT88SC102	Manufacturer Fuse	05h	B0h	01h
	EC2EN Fuse	05h	F9h	01h
	Issuer Fuse	06h	10h	01h
	Manufacturer Fuse	03h	F8h	00h
AT88SC1003	EC2EN Fuse	03h	FCh	00h
	Issuer Fuse	03h	E0h	00h

Table 4: Blown Fuse Code Values

Page 49 of 93

Response

Response	Data Out				
Result	SW1	SW2			

Where:

SW1 SW2

= 90 00h if the operation is completed successfully.

= 63 00 if there is no more retry chance.

Page 50 of 93

5.2. Contactless Smart Card Protocol

5.2.1. ATR Generation

If the reader detects a PICC, an ATR will be sent to the PC/SC driver for identifying the PICC.

5.2.2. ATR Format for ISO 14443 Part 3 PICCs

Byte	Value (Hex)	Designation	Description
0	3B	Initial Header	-
1	8N	ТО	Higher nibble 8 means: no TA1, TB1, TC1 only TD1 is following. Lower nibble N is the number of historical bytes (HistByte 0 to HistByte N-1)
2	80	TD1	Higher nibble 8 means: no TA2, TB2, TC2 only TD2 is following. Lower nibble 0 means T = 0
3	01	TD2	Higher nibble 0 means no TA3, TB3, TC3, TD3 following. Lower nibble 1 means T = 1
80		T1	Category indicator byte, 80 means A status indicator may be present in an optional COMPACT-TLV data object
	4F		Application identifier Presence Indicator
4 to	0C		Length
3+N	RID	Tk	Registered Application Provider Identifier (RID) # A0 00 00 03 06h
	SS		Byte for standard
	C0 C1		Bytes for card name
	00 00 00 00	RFU	RFU # 00 00 00 00h
4+N	UU	ТСК	Exclusive-oring of all the bytes T0 to Tk

Table 5: ISO 14443 Part 3 ATR Format

Page 51 of 93

Example:

ATR for MIFARE 1K = {3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 00 01 00 00 00 6Ah}

	ATR											
Initial Header	то	TD1	TD2	T1	Tk	Length	RID	Standard	Card Name	RFU	тск	
3Bh	8Fh	80h	01h	80h	4Fh	0Ch	A0 00 00 03 06h	03h	00h 01h	00 00 00 00h	6Ah	

Where:

Length (YY)	= 0Ch
RID	= A0 00 00 03 06h (PC/SC Workgroup)
Standard (SS)	= 03h (ISO 14443A, Part 3)
Card Name (C0 C1)	= [00 01h] (MIFARE 1K)
	[00 02h] (MIFARE 4K)
	[00 03h] (MIFARE Ultralight)
	[00 26h] (MIFARE Mini)
	[FF 28h] JCOP 30
	FF SAK undefined tags

Page 52 of 93

5.2.3. ATR Format for ISO 14443 Part 4 PICCs

Byte	Value (Hex)	Designation		Description				
0	3B	Initial Header		-				
1	8N	то	Higher nibble 8 means: no TA1, TB1, TC1 only TD1 is following. Lower nibble N is the number of historical bytes (HistByte 0 to HistByte N-1)					
2	80	TD1	TD2 is following	Higher nibble 8 means: no TA2, TB2, TC2 only TD2 is following. Lower nibble 0 means $T = 0$				
3	01	TD2	Higher nibble 0 means no TA3, TB3, TC3, TD3 following. Lower nibble 1 means T = 1					
	XX	T1	Historical Bytes:					
			ISO 14443A: The historical bytes from ATS response. Refer to the ISO 14443-4 specification. ISO 14443B:					
4 to	XX		Byte1-4	Byte5-7	Byte8			
3 + N	XX XX	Tk	Application Data from ATQB	Protocol Info Byte from ATQB	Higher nibble=MBLI from ATTRIB command Lower nibble (RFU)=0			
4+N	UU	ТСК	Exclusive-o	ring of all the by	vtes T0 to Tk			

Table 6: ISO 14443 Part 4 ATR Format

Example 1: Consider the ATR from MIFARE DESFire as follows:

DESFire (ATR) = 3B 81 80 01 80 80h (6 bytes of ATR)

Note: Use the APDU "FF CA 01 00 00h" to distinguish the ISO 14443A-4 and ISO 14443B-4 PICCs and retrieve the full ATS if available. The ATS is returned for ISO 14443A-3 or ISO 14443B-3/4 PICCs.

APDU Command = FF CA 01 00 00h

APDU Response = 06 75 77 81 02 90 00h

ATS = {06 75 77 81 02 80h}

Example 2: Consider the ATR from EZ-Link as follows:

EZ-Link (ATR) = 3B 88 80 01 1C 2D 94 11 F7 71 85 00 BEh

Application Data of ATQB = 1C 2D 94 11h

Protocol Information of ATQB = F7 71 85h

MBLI of ATTRIB = 00h

Page 53 of 93

5.2.4. Pseudo APDUs for Contactless Interface

5.2.4.1. Get data

This command returns the serial number or ATS of the "connected PICC."

Command

Command	Class	INS	P 1	P2	Le	
Cot Data	FFh	CAh	00h	00h	00h	
Get Data	F F 11	CAn	01h	00h	(Full Length)	

Get UID Response if P1 = 00h

Response	UID	 	UID	SW1	SW2
Result	LSB		MSB		

Get ATS Response if P1 = 01h (for ISO 14443-A cards only)

Response	Data Out		
Result	ATS	SW1	SW2

Response Code

Results	SW1 SW2	Meaning
Success	90 00h	The operation is completed successfully.
Warning	62 82h	End of UID/ATS reached before Le bytes (Le is greater than UID Length).
Error	6C XX	Wrong length (wrong number Le: 'XX' encodes the exact number) if Le is less than the available UID length.
Error	63 00h	The operation failed.
Error	6A 81h	Function not supported

Example 1: To get the serial number of the connected PICC:

UINT8 GET_UID[5] = {FF CA 00 00 00h};

Example 2: To get the ATS of the connected ISO 14443-A PICC:

UINT8 GET_ATS[5] = {FF CA 01 00 00h};

Page 54 of 93

5.2.4.2. PICC Commands (T=CL Emulation) for MIFARE 1K/4K Memory Cards

5.2.4.3. Load authentication keys

This command loads the authentication keys into the reader. The authentication keys are used to authenticate the specified sector of the MIFARE 1K/4K Memory Card. Two kinds of authentication key locations are provided, volatile and non-volatile key locations.

Command

V

Command	Class	INS	P1	P2	Le	Data In
Load Authentication Keys	FFh	82h	Key Structure	Key Number	06h	Key
Where:						
Key Structure	(1 byte)					
	00h = Ke	y is loa	ded into the re	eader's volatil	e mem	ory
	20h = Ke	y is loa	ded into the re	eader's non-vo	olatile r	nemory
	Other = R	eserve	d.			
Key Number	(1 byte)					
	permane reader is	ntly st disco	Non-volatile ored in the nnected fron -volatile men	reader and the PC. It o	will no	t be erased
	The key PC. Only	s will y one a ses:	Key) = Vola be erased w volatile men sion key for	hen the rean ory is provi	ider is ided. 7	disconnect The volatile
Кеу	(6 bytes)					
	The key	value	loaded into t	he reader.		
	E.g. {FF	FF FF	FF FF FFh}			

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2

= 90 00h means the operation is completed successfully.

= 63 00h means the operation failed.

Page 55 of 93

Example1:

Load a key { FF FF FF FF FF FF h } into the non-volatile memory location 05h.

Load a key { FF FF FF FF FF FF h } into the volatile memory location 20h.

Notes:

- 1. The application should know all the keys being used. It is recommended to store all the required keys to the non-volatile memory for security reasons. The contents of both volatile and non-volatile memories are not readable by any application.
- 2. The content of the volatile memory "Session Key 20h" will remain valid until the reader is reset or powered-off. The session key is useful for storing any key value that is changing from time to time. The session key is stored in the "Internal RAM", while the non-volatile keys are stored in "EEPROM" that is relatively slower than the "Internal RAM".
- 3. It is not recommended to use the "non-volatile key locations 00-1Fh" to store any "temporary key" that will be changed frequently. The "non-volatile keys" are supposed to be used for storing any "key value" that will not change frequently. If the "key value" is supposed to be changed from time to time, store the "key value" to the "volatile key location 20h" instead.

5.2.4.3.1. Authentication for MIFARE 1K/4K

This command is used to authenticate the MIFARE 1K/4K card (PICC) using the keys stored in the reader. Two types of authentication keys are used: Type_A and Type_B.

Command

Command	Class	INS	P1	P2	P3	Data In
Authentication 6 bytes (Obsolete)	FFh	88h	00h	Block Number	Кеу Туре	Key Number

Command	Class	INS	P1	P2	Lc	Data In
Authentication 10 bytes	FFh	86h	00h	00h	05h	Authenticate Data Bytes

Where:

Authenticate Data Bytes (5 bytes)

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Version 01h	00h	Block Number	Кеу Туре	Key Number

Where:

Block Number

(1 byte)

The memory block to be authenticated.

Advanced Card Systems Ltd.

Card & Reader Technologies

Note: For MIFARE 1K card, it has a total of 16 sectors and each sector consists of 4 consecutive blocks. For example, Sector 00h consists of Blocks {00h, 01h, 02h and 03h}; Sector 01h consists of Blocks {04h, 05h, 06h and 07h}; the last sector 0Fh consists of Blocks {3Ch, 3Dh, 3Eh and 3Fh}.

Once the authentication is done successfully, there is no need to do the authentication again provided that the blocks to be accessed belong to the same sector. Please refer to the MIFARE 1K/4K specification for more details.

Кеу Туре	(1 byte)
	60h = Key is used as Key A key for authentication.
	61h = Key is used as Key B key for authentication.
Key Number	(1 byte)
	00h – 1Fh = Non-volatile memory for storing keys. The keys are permanently stored in the reader and will not be erased even if the reader is disconnected from the PC. It can store up to 32 keys inside the reader non-volatile memory.
	20h (Session Key) = Volatile memory for temporarily storing keys. The keys will be erased when the reader is disconnected from the PC. Only 1 volatile memory is provided. The volatile key can be used as a session key for different sessions. Default value = FF FF FF FF FFh.

Response

Response	Data Out		
Result	SW1	SW2	

Where:

SW1 SW2

= 90 00h means the operation is completed successfully.

= 63 00h means the operation failed.

Sectors (Total of 16 sectors. Each sector consists of 4 consecutive blocks)	Data Blocks (3 blocks, 16 bytes per block)	Trailer Block (1 block, 16 bytes)	
Sector 0	00h ~ 02h	03h	-
Sector 1	04h ~ 06h	07h	
Sector 14	38h ~ 0Ah	3Bh	
Sector 15	3Ch ~ 3Eh	3Fh	_

Table 7: MIFARE 1K Memory Map

Sectors (Total of 32 sectors. Each sector consists of 4 consecutive blocks)	Data Blocks (3 blocks, 16 bytes per block)	Trailer Block (1 block, 16 bytes
Sector 0	00h ~ 02h	03h
Sector 1	04h ~ 06h	07h
Sector 30	78h ~ 7Ah	7Bh
Sector 31	7Ch ~ 7Eh	7Fh

Sectors (Total of 32 sectors. Each sector consists of 4 consecutive blocks)	Data Blocks (3 blocks, 16 bytes per block)	Trailer Block (1 block, 16 bytes
Sector 32	80h ~ 8Eh	8Fh
Sector 33	90h ~ 9Eh	9Fh
Sector 38	E0h ~ EEh	EFh
Sector 39	F0h ~ FEh	FFh

Table 8: MIFARE 4K Memory Map

Example 1:

To authenticate Block 04h with the following characteristics: Key A, key number 00h, from PC/SC V2.01 (Obsolete).

APDU = { FF 88 00 04 60 00h }

Example 2:

Similar to the previous example, to authenticate Block 04h with the following characteristics: Key A, key number 00h, from PC/SC V2.07.

APDU = { FF 86 00 00 05 01 00 04 60 00h }

Note: MIFARE® Ultralight does not need authentication since it provides free access to the user data area.

Page 58 of 93

Byte Number	0	1	2	3	Page	
Serial Number	SN0	SN1	SN2	BCC0	0	
Serial Number	SN3	SN4	SN5	SN6	1	
Internal/Lock	BCC1	Internal	Lock0	Lock1	2	
ОТР	OPT0	OPT1	OTP2	OTP3	3	
Data read/write	Data0	Data1	Data2	Data3	4	
Data read/write	Data4	Data5	Data6	Data7	5	
Data read/write	Data8	Data9	Data10	Data11	6	
Data read/write	Data12	Data13	Data14	Data15	7	512 bits
Data read/write	Data16	Data17	Data18	Data19	8	Or C4 hutes
Data read/write	Data20	Data21	Data22	Data23	9	64 bytes
Data read/write	Data24	Data25	Data26	Data27	10	
Data read/write	Data28	Data29	Data30	Data31	11	
Data read/write	Data32	Data33	Data34	Data35	12	
Data read/write	Data36	Data37	Data38	Data39	13	
Data read/write	Data40	Data41	Data42	Data43	14	
Data read/write	Data44	Data45	Data46	Data47	15] ノ

Table 9: MIFARE Ultralight Memory Map

5.2.4.3.2. Read binary blocks

This command retrieves multiple "data blocks" from the PICC. The data block/trailer must be authenticated first before executing the "Read Binary Blocks" command.

Command

Command	Class	INS	P1	P2	Le		
Read Binary Blocks	FFh	B0h	00h	Block Number	Number of Bytes to Read		
Where:							
Block Number		(1 byt	e)				
		Startir	ng Bloo	ck			
Number of Bytes to Read		The length of the bytes to be read can be a multiple of 16 byte for MIFARE 1K/4K or a multiple of 4 bytes for MIFARE Ultraligh (1 Byte).					
	Maximum of 16 bytes for MIFARE Ultralight.						
				f 48 bytes for MIF blocks).	FARE 1K (Multiple Blocks Mod		
				f 240 bytes for MIF blocks).	FARE 4K (Multiple Blocks Mode		

Example 1: 10h (16 bytes). Starting block only. (Single Block Mode)

Example 2: 40h (64 bytes). From starting block to starting block +3. (Multiple Blocks Mode)

Note: For security considerations, the Multiple Block Mode is used for accessing data blocks only. The Trailer Block is not supposed to be accessed in Multiple Blocks Mode. Please use Single Block Mode to access the Trailer Block.

Response

Result Data (Multiple of 4 or 16 bytes) SW1	SW2

Where:

SW1 SW2 = 90 00h means the operation is completed successfully.

= 63 00h means the operation failed.

Example 1: Read 16 bytes from the binary block 04h (MIFARE 1K or 4K).

APDU = { FF B0 00 04 10h }

Example 2: Read 240 bytes starting from the binary block 80h (MIFARE 4K). Block 80h to Block 8Eh (15 blocks).

APDU = { FF B0 00 80 F0 }

5.2.4.3.3. Update binary blocks

This command writes multiple data blocks into the PICC. The data block/trailer block must be authenticated first before executing the "Update Binary Blocks" command.

Command

Command	Class	INS	P1	P2	Le	Data In
Update Binary Blocks	FFh	D6h	00h	Block Number	Number of Bytes to Update	Block Data (Multiple of 16 Bytes)

Where:

Block Number	(1 byte)
	Starting Block
Block Data	Multiple of 16 + 2 Bytes, or 6 Bytes. Data to be written into the binary blocks.
Number of Bytes to Read	The length of the bytes to be read can be a multiple of 16 bytes for MIFARE 1K/4K or a multiple of 4 bytes for MIFARE Ultralight (1 byte).
	Maximum of 16 bytes for MIFARE Ultralight.
	Maximum of 48 bytes for MIFARE 1K (Multiple Blocks Mode; 3 consecutive blocks).
	Maximum of 240 bytes for MIFARE 4K (Multiple Blocks

Page 60 of 93

Mode; 15 consecutive blocks).

Example 1: 10h (16 bytes). Starting block only. (Single Block Mode)

Example 2: 30h (48 bytes). From starting block to starting block +2. (Multiple Blocks Mode)

Note: For security considerations, the Multiple Block Mode is used for accessing data blocks only. The Trailer Block is not supposed to be accessed in Multiple Blocks Mode. Please use Single Block Mode to access the Trailer Block.

Response

Response	Data	Out
Result	SW1	SW2
Where:		
SW1 SW2		= 9
		= 6

Example 1: Update the binary block 04h of MIFARE 1K/4K with Data {00 01 .. 0Fh} APDU = { FF D6 00 04 10 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0Fh }

Example 2: Update the binary block 04h of MIFARE Ultralight with Data { 00 01 02 03h } APDU = {FF D6 00 04 04 00 01 02 03h}

5.2.4.3.4. Value block operation (Increment, Decrement, Store)

This command manipulates value-based transactions (e.g., increment a value block, etc.).

Command

Command	Class	INS	P1	P2	Lc		Data In
Value Block Operation	FFh	D7h	00h	Block Number	05h	VB_OP	VB_Value (4 Bytes) {MSBLSB}

Where:

Block Number	(1 byte)
	Value Block to be manipulated
VB_OP	(1 byte)
	Value block operation
	00h = Store VB_Value into the block. The block will then be converted to a value block.
	01h = Increment the value of the value block by the VB_Value. This command is only valid for value blocks.
	02h = Decrement the value of the value block by the VB_Value. This command is only valid for value blocks.

Page 61 of 93

VB_Value

(4 bytes)

The value used for manipulation. The value is a signed long integer.

Example 1: Decimal - 4 = { FF FF FF FCh }

VB_Value						
MSB			LSB			
FFh	FFh	FFh	FCh			

Example 2: Decimal 1 = { 00 00 00 01h }

VB_Value						
MSB			LSB			
00h	00h	00h	01h			

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2 = 90 00h means the operation is completed successfully.

= 63 00h means the operation failed.

5.2.4.3.5. Read value block

This command retrieves the value from the value block. This command is only valid for value blocks.

Command

Command	Class	INS	P1	P2	Le
Read Value Block	FFh	B1h	00h	Block Number	00h

Where:

Block Number

(1 byte)

The value block to be accessed.

Page 62 of 93

Response

Response	Data Out					
Result	Value {MSB … LSB}	SW1	SW2			

Where:

Value

(4 bytes)

The value returned from the cards. The value is a signed long integer.

Example 1: Decimal - 4 = { FF FF FF FCh }

VB_Value							
MSB			LSB				
FFh	FFh	FFh	FCh				

Example 2: Decimal 1 = { 00 00 00 01h }

VB_Value							
MSB			LSB				
00h	00h	00h	01h				

Response

Response	Data Out				
Result	SW1	SW2			

Where:

SW1 SW2

= 90 00h means the operation is completed successfully.

= 63 00h means the operation failed.

5.2.4.3.6. Copy value block

This command copies a value from a value block to another value block.

Command

Command	Class	INS	P 1	P2	Lc		Data In
Copy Value Block	FFh	D7h	00h	Source Block Number	02h	03h	Target Block Number

Where:

Source Block Number (1 byte)

Block number where the value will come from and copied to the target value block.

Page 63 of 93

Target Block Number (1 byte)

Block number where the value from the source block will be copied to. The source and target value blocks must be in the same sector.

Response

Response	Data Out			
Result	SW1	SW2		

Where:

SW1 SW2

2 = 90 00h means the operation is completed successfully.

= 63 00h means the operation failed.

Example 1: Store a value "1" into block 05h

APDU = {FF D7 00 05 05 00 00 00 01h}

Example 2: Read the value block 05h

APDU = {FF B1 00 05 00h}

Example 3: Copy the value from value block 05h to value block 06h

APDU = {FF D7 00 05 02 03 06h}

Example 4: Increment the value block 05h by "5"

APDU = {FF D7 00 05 05 01 00 00 00 05h}

5.2.4.4. Access PC/SC-compliant tags (ISO 14443-4)

Basically, all ISO 14443-4–compliant cards (PICCs) can understand the ISO 7816-4 APDUs. The ACR1281U-C1 reader only needs to communicate with the ISO 14443-4–compliant cards through exchanging ISO 7816-4 APDUs and responses. ACR1281U-C1 will handle the ISO 14443 Parts 1-4 Protocols internally.

The MIFARE Classic 1K/4K, MIFARE Mini and MIFARE Ultralight tags are supported through the T=CL emulation. Simply treat the MIFARE tags as standard ISO 14443-4 tags. For more information, see **<u>PICC Commands</u>** (T=CL Emulation) for MIFARE 1K/4K Memory Cards.

Command

Command	Class	INS	P1	P2	Lc	Data In	Le
ISO 7816 Part 4 Command					Length of the Data In		Expected Length of the Response Data

Response

Response	Data	Out
Result	SW1	SW2

Where:

SW1 SW2

= 90 00h means the operation is completed successfully.

= 63 00h means the operation failed.

Typical sequence may be:

- 1. Present the tag and connect the PICC interface.
- 2. Read/Update the memory of the tag.

Step 1: Connect the tag.

The ATR of the tag is 3B 88 80 01 00 00 00 03 81 81 00 3Ah In which.

The Application Data of ATQB = 00 00 00 00h, protocol information of ATQB = 33 81 81h. It is an ISO 14443-4 Type B tag.

Step 2: Send an APDU, Get Challenge.

<< 00 84 00 00 08h

>> 1A F7 F3 1B CD 2B A9 58 [90 00h]

Note: For ISO 14443-4 Type A tags, the ATS can be obtained by using the APDU "FF CA 01 00 00h."

Example: ISO 7816-4 APDU

To read 8 bytes from an ISO 14443-4 Type B PICC (ST19XR08E) APDU = { 80 B2 80 00 08h } Class = 80h; INS = B2h; P1 = 80h; P2 = 00h; Lc = None; Data In = None; Le = 08h

Answer: 00 01 02 03 04 05 06 07 [\$90 00h]

Page 65 of 93

5.3. Peripherals Control

The reader's peripherals control commands are implemented by using *PC_to_RDR_Escape*. *Note: The driver will add the Class, INS and P1 automatically.*

5.3.1. Get firmware version

This command gets the reader's firmware version.

Command

Command	Class	INS	P1	P2	Lc
Get Firmware Version	E0h	00h	00h	18h	00h

Response

Response	Class	INS	P1	P2	Le	Data Out
Result	E1h	00h	00h	00h	Number of Bytes to be Received	Firmware Version

Example:

Response = E1 00 00 00 0F 41 43 52 31 32 38 31 55 5F 56 35 30 33 2E 31 Firmware Version (HEX) = 41 43 52 31 32 38 31 55 5F 56 35 30 33 2E 31 Firmware Version (ASCII) = "ACR1281U_V503.1"

Page 66 of 93

5.3.2. LED Control

This command controls the LED output.

Command

Command	Class	INS	P1	P2	Lc	Data In
LED Control	E0h	00h	00h	29h	01h	LED Status

Response

Response	Class	INS	P1	P2	Le	Data Out
Result	E1h	00h	00h	00h	01h	LED Status

Where:

LED Status (1 byte)

LED Status	Description	Description
Bit 0	Red LED	1 = ON 0 = OFF
Bit 1	Green LED	1 = ON 0 = OFF
Bit 2 – 7	RFU	RFU

Page 67 of 93

5.3.3. LED Status

This command checks the existing LED status.

Command

Command	Class	INS	P1	P2	Lc
LED Status	E0h	00h	00h	29h	00h

Response

Response	Class	INS	P 1	P2	Le	Data Out
Result	E1h	00h	00h	00h	01h	LED Status

Where:

LED Status (1 byte)

LED Status	Description	Description
Bit 0	Red LED	1 = ON
		0 = OFF
Bit 1	Green LED	1 = ON
DILI	Green LLD	0 = OFF
Bit 2 – 7	RFU	RFU

Page 68 of 93

5.3.4. Buzzer Control

This command controls the buzzer output.

Command

Command	Class	INS	P1	P2	Lc	Data In
Buzzer Control	E0h	00h	00h	28h	01h	Buzzer on Duration

Where:

Buzzer on Duration (1 byte)

01 - FFh = Duration (unit: 10 ms)

Response

Response	Class	INS	P1	P2	Le	Data Out
Result	E1h	00h	00h	00h	01h	00h

Page 69 of 93

Default Behaviors

5.3.5. Set default LED and buzzer behaviors

This command sets the default behavior of the LEDs and buzzer.

Command

Command	Class	INS	P1	P2	Lc	Data In
Set Default LED and Buzzer Behaviors	E0h	00h	00h	21h	01h	Default Behaviors

Where:

(1 Byte)

Default value = FBh.

LED Status	Description	Description
Bit 0	ICC Activation Status LED	To show the activations status of the ICC interface. 1 = Enable 0 = Disable
Bit 1	PICC Polling Status LED	To show the PICC polling status. 1 = Enable 0 = Disable
Bit 2	RFU	RFU
Bit 3	RFU	RFU
Bit 4	Card Insertion and Removal Events Buzzer	To make a beep whenever a card insertion or removal event is detected (for both ICC and PICC). 1 = Enable 0 = Disable
Bit 5	Contactless Chip Reset Indication Buzzer	To make a beep when the contactless chip is reset. 1 = Enable 0 = Disable
Bit 6	Exclusive Mode Status Buzzer. Either ICC or PICC Interface can be activated	To make a beep when the exclusive mode is activated. 1 = Enable 0 = Disable
Bit 7	Card Operation Blinking LED	To make the LED blink whenever the card (PICC or ICC) is being accessed.

Response

Response	Class	INS	P1	P2	Le	Data Out
Result	E1h	00h	00h	00h	01h	Default Behaviors

Page 70 of 93

5.3.6. Read default LED and buzzer behaviors

This command reads the current default behaviors of LEDs and buzzer.

Command

Command	Class	INS	P1	P2	Lc
Read Default LED and Buzzer Behaviors	E0h	00h	00h	21h	00h

Response

Response	Class	INS	P1	P2	Le	Data Out
Result	E1h	00h	00h	00h	01h	Default Behaviors

Where:

Default Behaviors

(1 byte)

Default value = FBh.

LED Status	Description	Description
Bit 0	ICC Activation Status LED	To show the activations status of the ICC interface. 1 = Enable 0 = Disable
Bit 1	PICC Polling Status LED	To show the PICC polling status. 1 = Enable 0 = Disable
Bit 2	RFU	RFU
Bit 3	RFU	RFU
Bit 4	Card Insertion and Removal Events Buzzer	To make a beep whenever a card insertion or removal event is detected (for both ICC and PICC). 1 = Enable 0 = Disable
Bit 5	Contactless Chip Reset Indication Buzzer	To make a beep when the contactless chip is reset. 1 = Enable 0 = Disable
Bit 6	Exclusive Mode Status Buzzer. Either ICC or PICC Interface can be activated	To make a beep when the exclusive mode is activated. 1 = Enable 0 = Disable
Bit 7	Card Operation Blinking LED	To make the LED blink whenever the card (PICC or ICC) is being accessed.

Page 71 of 93

5.3.7. Initialize cards insertion counter

This command initializes the cards insertion/detection counter.

Command

Command	Class	INS	P1	P2	Lc	Data In				
Initialize Cards Insertion Counter	E0h	00h	00h	09h	04h	ICC Cnt (LSB)	ICC Cnt (MSB)	PICC Cnt (LSB)	PICC Cnt (MSB)	
Where:										
ICC Cnt (LSB)	(1 byte)									
	ICC Insertion Counter (LSB)									
ICC Cnt (MSB)	(1 byte)									
	ICC Insertion Counter (MSB)									
PICC Cnt (LSB)	(1 byte)									
	PICC Insertion Counter (LSB)									
PICC Cnt (MSB)	(1 byte)									
	PICC Insertion Counter (MSB)									

Response

Response	Class	INS	P 1	P2	Le	
Result	E1h	00h	00h	00h	00h	

5.3.8. Read cards insertion counter

This command checks the cards insertion/detection counter value.

Command

Command	Class	INS	P1	P2	Lc
Read Cards Insertion Counter	E0h	00h	00h	09h	00h

Response

Response	Class	INS	P1	P2	Le	Data Out			
Result	E1h	00h	00h	00h	04h	ICC Cnt (LSB)	ICC Cnt (MSB)	PICC Cnt (LSB)	PICC Cnt (MSB)

Where:

ICC Cnt (LSB)	(1 byte)
	ICC Insertion Counter (LSB)
ICC Cnt (MSB)	(1 byte)
	ICC Insertion Counter (MSB)
PICC Cnt (LSB)	(1 byte)
	PICC Insertion Counter (LSB)
PICC Cnt (MSB)	(1 byte)
	PICC Insertion Counter (MSB)

Page 73 of 93

5.3.9. Update cards insertion counter

This command updates the cards insertion/detection counter value.

Command

Command	Class	INS	P1	P2	Lc
Update Cards Insertion Counter	E0h	00h	00h	0Ah	00h

Response

Response	Class	INS	P1	P2	Le	Data Out			
Result	E1h	00h	00h	00h	04h	ICC Cnt (LSB)	ICC Cnt (MSB)	PICC Cnt (LSB)	PICC Cnt (MSB)

Where:

ICC Cnt (LSB)	(1 byte)
	ICC Insertion Counter (LSB)
ICC Cnt (MSB)	(1 byte)
	ICC Insertion Counter (MSB)
PICC Cnt (LSB)	(1 byte)
	PICC Insertion Counter (LSB)
PICC Cnt (MSB)	(1 byte)
	PICC Insertion Counter (MSB)

Page 74 of 93

5.3.10. Set automatic PICC polling

This command sets the reader's polling mode.

Whenever the reader is connected to the computer, the PICC polling function will start the PICC scanning to determine if a PICC is placed on/removed from the built-in antenna.

You can send a command to disable the PICC polling function by sending a command through the PC/SC Escape Command interface. To meet the energy saving requirement, special modes are provided for turning off the antenna field whenever the PICC is inactive, or no PICC is found. The reader will consume less current in power saving mode.

Command

Command	Class	INS	P1	P2	Lc	Data In
Set Automatic PICC Polling	E0h	00h	00h	23h	01h	Polling Setting

Response

Response	Class	INS	P1	P2	Le	Data Out
Result	E1h	00h	00h	00h	01h	Polling Setting

Where:

Polling Setting

(1 byte)

Default value = 8Fh

Polling Setting	Description	Description
Bit 0	Auto PICC Polling	1 = Enable 0 = Disable
Bit 1	Turn off Antenna Field if no PICC found	1 = Enable 0 = Disable
Bit 2	Turn off Antenna Field if the PICC is inactive	1 = Enable 0 = Disable
Bit 3	RFU	RFU
Bit 5 – 4	PICC Polling Interval for PICC	Bit 5 - Bit 4: 0 - 0 = 250 ms 0 - 1 = 500 ms 1 - 0 = 1000 ms 1 - 1 = 2500 ms
Bit 6	RFU	RFU
Bit 7	Enforce ISO 14443A Part 4	1 = Enable 0 = Disable

Notes:

1. It is recommended to enable the option "Turn off Antenna Field is the PICC is inactive," so that the "Inactive PICC" will not be exposed to the field all the time to prevent the PICC from "warming up."

Page 75 of 93

- 2. The longer the PICC Poll Interval, the more efficient it is for energy saving. However, the response time of PICC Polling will become longer. The Idle Current Consumption in Power Saving Mode is about 60 mA, while the Idle Current Consumption in Non-Power Saving mode is about 130 mA. Idle Current Consumption = PICC is not activated.
- 3. The reader will activate the ISO 14443A-4 mode of the "ISO 14443A-4 compliant PICC" automatically. Type B PICC will not be affected by this option.
- 4. The JCOP30 card comes with two modes: ISO 14443A-3 (MIFARE 1K) and ISO 14443A-4 modes. The application has to decide which mode should be selected once the PICC is activated.

Page 76 of 93

5.3.11. Read automatic PICC polling

This command checks the current automatic PICC polling.

Command

Command	Class	INS	P1	P2	Lc
Read Automatic PICC Polling	E0h	00h	00h	23h	00h

Response

Response	Class	INS	P 1	P2	Le	Data Out
Result	E1h	00h	00h	00h	01h	Polling Setting

Where:

Polling Setting

(1 byte)

Default value = 8Fh	

Polling Setting	Description	Description
Bit 0	Auto PICC Polling	1 = Enable 0 = Disable
Bit 1	Turn off Antenna Field if no PICC found	1 = Enable 0 = Disable
Bit 2	Turn off Antenna Field if the PICC is inactive	1 = Enable 0 = Disable
Bit 3	RFU	RFU
Bit 5 – 4	PICC Polling Interval for PICC	Bit 5 - Bit 4: 0 - 0 = 250 ms 0 - 1 = 500 ms 1 - 0 = 1000 ms 1 - 1 = 2500 ms
Bit 6	RFU	RFU
Bit 7	Enforce ISO 14443A Part 4	1 = Enable 0 = Disable

Page 77 of 93

5.3.12. Manual PICC polling

This command determines if any PICC is within the detection range of the reader. This command can be used if the automatic PICC polling function is disabled.

Command

Command	Class	INS	P1	P2	Lc	Data In
Manual PICC Polling	E0h	00h	00h	22h	01h	0Ah

Response

Response	Class	INS	P1	P2	Le	Data Out
Result	E1h	00h	00h	00h	01h	Status

Where:

Status

(1 byte)

00h = PICC is detected

FFh = No PICC is detected

Page 78 of 93

5.3.13. Set PICC operating parameter

The command sets the PICC operating parameter.

Command

Command	Class	INS	P1	P2	Lc	Data In
Set the PICC Operating Parameter	E0h	00h	00h	20h	01h	Operating Parameter

Response

Response	Class	INS	P1	P2	Le	Data Out
Result	E1h	00h	00h	00h	01h	Operating Parameter

Where:

Operating Parameter (1 byte)

Default value = 03h

Operating Parameter	Parameter	Description	Option
Bit 0	ISO 14443 Type A	The tag types to be	1 = Detect 0 = Skip
Bit 1	ISO 14443 Type B	detected during PICC Polling	1 = Detect 0 = Skip
Bit 2 – 7	RFU	RFU	RFU

Page 79 of 93

5.3.14. Read PICC operating parameter

This command checks current PICC operating parameter.

Command

Command	Class	INS	P1	P2	Lc
Read the PICC Operating Parameter	E0h	00h	00h	20h	00h

Response

Response	Class	INS	P 1	P2	Le	Data Out
Result	E1h	00h	00h	00h	01h	Operating Parameter

Where:

Operating Parameter (1 byte)

Operating Parameter	Parameter	Description	Option
Bit 0	ISO 14443 Type A	The tag types to be detected during	1 = Detect 0 = Skip
Bit 1	ISO 14443 Type B	PICC Polling	1 = Detect 0 = Skip
Bit 2 – 7	RFU	RFU	RFU

Page 80 of 93

5.3.15. Set exclusive mode

This command sets the reader in to/out from exclusive mode.

Command

Command	Class	INS	P1	P2	Lc	Data In
Set Exclusive Mode	E0h	00h	00h	2Bh	01h	New Mode Configuration

Response

Response	Class	INS	P1	P2	Le	Data Out		
Result	E1h	00h	00h	00h	02h	Mode Configuration	Current Mode Configuration	

Where:

Exclusive Mode

(1 byte)

 $\mathsf{00h} = \mathsf{Share} \ \mathsf{Mode:} \ \mathsf{ICC} \ \mathsf{and} \ \mathsf{PICC} \ \mathsf{interfaces} \ \mathsf{can} \ \mathsf{work} \ \mathsf{at} \ \mathsf{the} \ \mathsf{same} \ \mathsf{time.}$

01h = Exclusive Mode: PICC is disabled when Auto Polling and Antenna Power Off when ICC is inserted (Default).

5.3.16. Read exclusive mode

This command checks the current exclusive mode setting.

Command

Command	Class	INS	P1	P2	Lc
Read Exclusive Mode	E0h	00h	00h	2Bh	00h

Response

Response	Class	INS	P1	P2	Le	Dat	a Out
Result	E1h	00h	00h	00h	02h	Mode Configuration	Current Mode Configuration

Where:

Exclusive Mode

(1 byte)

00h = Share Mode: ICC and PICC interfaces can work at the same time.

01h = Exclusive Mode: PICC is disabled when Auto Polling and Antenna Power Off when ICC is inserted (Default).

Page 82 of 93

5.3.17. Set auto PPS

Whenever a PICC is recognized, the reader will try to change the communication speed between the PCD and PICC defined by the maximum connection speed. If the card does not support the proposed connection speed, the reader will try to connect the card with a slower speed setting.

Command

Command	Class	INS	P1	P2	Lc	Data In
Set Auto PPS	E0h	00h	00h	24h	01h	Max Speed

Response

Response	Class	INS	P1	P2	Le	Data	Out
Result	E1h	00h	00h	00h	02h	Max Speed	Current Speed

Where:

Max Speed	Maximum Speed (1 byte)				
Current Speed	Current Speed (1 byte)				
	00h = 106 Kbps; default setting, equal to No Auto PPS				
	01h = 212 Kbps				
	02h = 424 Kbps				
	03h = 848 Kbps				

Notes:

- Normally, the application should know the maximum connection speed of the PICCs being used. The environment also affects the maximum achievable speed. The reader just uses the proposed communication speed to talk with the PICC. The PICC will become inaccessible if the PICC or environment does not meet the requirement of the proposed communication speed.
- 2. If the higher speed setting affects the performance of the reader, please switch back to a lower speed setting.

Page 83 of 93

5.3.18. Read auto PPS

This command checks the current auto PPS setting.

Command

Command	Class	INS	P1	P2	Lc
Read Auto PPS	E0h	00h	00h	24h	00h

Response

Response	Class	INS	P1	P 2	Le	Data	Out
Result	E1h	00h	00h	00h	02h	Max Speed	Current Speed

Where:

Max Speed	Maximum Speed (1 byte)
-----------	------------------------

Current Speed Current Speed (1 byte)

00h = 106 Kbps; default setting, equal to No Auto PPS

01h = 212 Kbps

02h = 424 Kbps

03h = 848 Kbps

Appendix A. Basic program flow for contactless applications

Step 0: Start the application. The reader will do the PICC polling and scan for tags continuously. Once the tag is found and detected, the corresponding ATR will be sent to the computer.

Step 1: Connect the "ACR1281U PICC Interface" with T=1 protocol.

Step 2: Access the PICC by exchanging APDUs.

...

Step N: Disconnect the "ACR1281U PICC Interface". Shut down the application.

Page 85 of 93

Appendix B. Accessing MIFARE DESFire tags (ISO 14443-4)

MIFARE® DESFire supports ISO 7816-4 APDU Wrapping and Native modes. Once the DESFire tag is activated, the first APDU sent to the DESFire tag will determine the "Command Mode." If the first APDU is "Native Mode," the rest of the APDUs must be in "Native Mode" format. Similarly, if the first APDU is "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode," the rest of the APDUs must be in "ISO 7816-4 APDU Wrapping Mode" format.

Example 1: MIFARE DESFire ISO 7816-4 APDU Wrapping. To read 8 bytes random number from an ISO 14443-4 Type A PICC (DESFire): APDU = {90 0A 00 00 01 00 00h}

Class = 90h; INS = 0Ah (DESFire Instruction); P1 = 00h; P2 = 00h Lc = 01h; Data In = 00h; Le = 00h (Le = 00h for maximum length)

Answer: 7B 18 92 9D 9A 25 05 21h [\$91AFh]

Note: Status Code {91 AFh} is defined in MIFARE DESFire specification. Please refer to MIFARE DESFire specification for more details.

Example 2: MIFARE DESFire Frame Level Chaining (ISO 7816 wrapping mode)

In this example, the application has to do the "Frame Level Chaining".

To get the version of the DESFire card:

Step 1: Send an APDU {90 60 00 00 00h} to get the first frame. INS=60h Answer: 04 01 01 00 02 18 05 91 AFh [\$91AFh]

Step 2: Send an APDU {90 AF 00 00 00h} to get the second frame. INS=AFh Answer: 04 01 01 00 06 18 05 91 AFh [\$91AFh]

Step 3: Send an APDU {90 AF 00 00 00h} to get the last frame. INS=AFh Answer: 04 52 5A 19 B2 1B 80 8E 36 54 4D 40 26 04 91 00h [\$9100h]

Example 3: MIFARE DESFire Native Command.

You can send Native DESFire Commands to the reader without ISO 7816 wrapping if we find that the Native DESFire Commands are easier to handle.

To read 8 bytes random number from an ISO 14443-4 Type A PICC (DESFire):

APDU = {0A 00h}

Answer: AF 25 9C 65 0C 87 65 1D D7h [\$1DD7h]

In which, the first byte "AF" is the status code returned by the MIFARE DESFire card. The Data inside the blanket [\$1DD7h] can simply be ignored by the application.

Page 86 of 93

Example 4: MIFARE DESFire Frame Level Chaining (Native Mode) In this example, the application has to do the "Frame Level Chaining". To get the version of the DESFire card:

Step 1: Send an APDU {60h} to get the first frame. INS=60h Answer: AF 04 01 01 00 02 18 05h [\$1805h]

Step 2: Send an APDU {AFh} to get the second frame. INS=AFh Answer: AF 04 01 01 00 06 18 05h [\$1805h]

Step 3: Send an APDU {AFh} to get the last frame. INS=AFh Answer: 00 04 52 5A 19 B2 1B 80 8E 36 54 4D 40 26 04h [\$2604h]

Note: In MIFARE DESFire Native Mode, the status code [90 00h] will not be added to the response if the response length is greater than 1. If the response length is less than 2, the status code [90 00h] will be added in order to meet the requirement of PC/SC. The minimum response length is 2.

Page 87 of 93

Appendix C. Extended APDU Example

Card: ACOS7 (supports Extended APDU, echo response) Write CMD: 80 D2 00 00 XX XX XXh CLA = 80h INS = D2h P1 = 00h P2 = 00h Data Len = XX XX XXh

Example 1: APDU length = 263 bytes

APDU Command:

80D200000010000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F 202122232425262728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F40414243444546 4748494A4B4C4D4E4F505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6 D6E6F707172737475767778797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F90919293 9495969798999A9B9C9D9E9FA0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B 8B9BABBBCBDBEBFC0C1C2C3C4C5C6C7C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9D ADBDCDDDEDFE0E1E2E3E4E5E6E7E8E9EAEBECEDEEEFF0F1F2F3F4F5F6F7F8F9FAFBFCFD FEFFh

Response:

000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F20212223242526 2728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4 D4E4F505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273 7475767778797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F909192939495969798999A 9B9C9D9E9FA0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B8B9BABBBCBDB EBFC0C1C2C3C4C5C6C7C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9DADBDCDDDEDFE 0E1E2E3E4E5E6E7E8E9EAEBECEDEEEFF0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF9000h

Example 2: APDU length = 775 bytes

APDU Command:

80D2000000300000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F 202122232425262728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F40414243444546 4748494A4B4C4D4E4F505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6 D6E6F707172737475767778797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F90919293 9495969798999A9B9C9D9E9FA0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B 8B9BABBBCBDBEBFC0C1C2C3C4C5C6C7C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9D ADBDCDDDEDFE0E1E2E3E4E5E6E7E8E9EAEBECEDEEEFF0F1F2F3F4F5F6F7F8F9FAFBFCFD FEFF000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F2021222324 25262728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B 4C4D4E4F505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717 2737475767778797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F9091929394959697989 99A9B9C9D9E9FA0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B8B9BABBBC BDBEBFC0C1C2C3C4C5C6C7C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9DADBDCDDDE DFE0E1E2E3E4E5E6E7E8E9EAEBECEDEEEFF0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF0001020 30405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292 A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E4F50 5152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F7071727374757677

Page 88 of 93

78797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F909192939495969798999A9B9C9D9 E9FA0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B8B9BABBBCBDBEBFC0C1 C2C3C4C5C6C7C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9DADBDCDDDEDFE0E1E2E3 E4E5E6E7E8E9EAEBECEDEEEFF0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFFh

Response:

000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F20212223242526 2728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4 D4E4F505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273 7475767778797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F909192939495969798999A 9B9C9D9E9FA0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B8B9BABBBCBDB EBFC0C1C2C3C4C5C6C7C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9DADBDCDDDEDFE 0E1E2E3E4E5E6E7E8E9EAEBECEDEEEFF0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF00010203040 5060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2 C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E4F505152 535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273747576777879 7A7B7C7D7E7F808182838485868788898A8B8C8D8E8F909192939495969798999A9B9C9D9E9FA 0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B8B9BABBBCBDBEBFC0C1C2C3 C4C5C6C7C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9DADBDCDDDEDFE0E1E2E3E4E5 E6E7E8E9EAEBECEDEEEFF0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF000102030405060708090A 0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F303 132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E4F50515253545556575 8595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F707172737475767778797A7B7C7D7E 7F808182838485868788898A8B8C8D8E8F909192939495969798999A9B9C9D9E9FA0A1A2A3A4A 5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B8B9BABBBCBDBEBFC0C1C2C3C4C5C6C7C 8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9DADBDCDDDEDFE0E1E2E3E4E5E6E7E8E9EA EBECEDEEEFF0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF9000h

Appendix D. Escape Command Example

Example: Get firmware version (using PCSCDirectCommand.exe).

Step 1: Plug in the ACR1281 Reader to the computer.

Step 2: Open the PCSCDirectCommand.exe.

Step 3: Connect the reader in Direct mode. The ATR will be displayed (if a card is present) or "No ATR retrieved (ATRLen = 0)" will be displayed (if no card).

Step 4: Enter Command: "2079"

Enter Data: "18 00" (APDU for Get Firmware Version)

Press Enter to send to reader, and then check the response.

Note: PCSCDirectCommand.exe is not available in the Software Development Kit (SDK). Please contact ACS for more information.

Page 90 of 93

Appendix E. Supported Card Types

The following table summarizes the card type returned by GET_READER_INFORMATION correspond with the respective card type.

Card Type Code	Card Type			
00h	Auto-select T=0 or T=1 communication protocol			
01h	I2C memory card (1k, 2k, 4k, 8k and 16k bits)			
02h	I2C memory card (32k, 64k, 128k, 256k, 512k and 1024k bits)			
03h	RFU			
04h	RFU			
05h	Infineon SLE4418 and SLE4428			
06h	Infineon SLE4432 and SLE4442			
07h	Infineon SLE4406, SLE4436 and SLE5536			
08h	Infineon SLE4404			
09h	RFU			

Page 91 of 93

Appendix F. ACR128 Compatibility

Below is the list of ACR128 functions that are implemented differently or not supported by ACR1281U-C1.

	Functions	ACR128	ACR1281U-C1
1.	Change the default FWI and Transmit Frame Size of the activated PICC.	1F 03 [Data: 3 bytes]	Not supported.
2.	Transceiver Setting	20 04 06 [Data: 3 bytes]	Not supported.
3.	PICC Setting	2A 0C [Data: 12 bytes]	Not supported.
4.	PICC T=CL Data Exchange Error Handling	2C 02 [Data:1 byte]	Not supported.
5.	Read Register	19 01 [Reg. No.]	Not supported.
6.	Update Register	1A 02 [Reg. No.] [Value]	Not supported.
7.	PICC Polling for Specific Types	20 02 [Data: 1 byte] FF	20 01 [Data: 1 byte]
8.	Buzzer Control	28 01 [Duration] Duration: 00 = Turn Off 01 – FE = Duration x 10 ms FF = Turn On	28 01 [Duration] Duration: 01 – FF = Duration × 10 ms

Page 92 of 93

Functions	ACR128	ACR1281U-C1
	Set: 21 01 [Data: 1 byte] Read: 21 00	Set: 21 01 [Data: 1 byte] Read: 21 00
	Data: Bit 0 = ICC Activation Status	Data: Bit 0 = ICC Activation Status
	Bit 1 = PICC Polling Status LED	Bit 1 = PICC Polling Status LED
	Bit 2 = PICC Activation Status Buzzer	Bit 2 = RFU
9. Set/Read Default LED and Buzzer Behaviors	Bit 3 = PICC PPS Status Buzzer	Bit 3 = RFU
	Bit 4 = Card Insertion and Removal Events Buzzer	Bit 4 = Card Insertion and Removal Events Buzzer
	Bit 5 = Contactless Chip Reset Indication Buzzer	Bit 5 = Contactless Chip Reset Indication Buzzer
	Bit 6 = Exclusive Mode Status Buzzer	Bit 6 = Exclusive Mode Status Buzzer
	Bit 7 = Card Operation Blinking LED	Bit 7 = Card Operation Blinking LED
	Set: 23 01 [Data: 1 byte] Read: 23 00	Set: 23 01 [Data: 1 byte] Read: 23 00
	Data: Bit 0 = Auto PICC Polling	Data: Bit 0 = Auto PICC Polling
	Bit 1 = Turn off Antenna Field if no PICC is found	Bit 1 = Turn off Antenna Field if no PICC is found
10. Set/Read Automatic PICC Polling	Bit 2 = Turn off Antenna Field if the PICC is inactive	Bit 2 = Turn off Antenna Field if the PICC is inactive
	Bit 3 = Activate the PICC when detected	Bit 3 = RFU
	Bit 45 = PICC Poll Interval for PICC	Bit 45 = PICC Poll Interval for PICC
	Bit 6 = Test Mode	Bit 6 = RFU
	Bit 7 = Enforce ISO 14443A Part 4	Bit 7 = Enforce ISO 14443A Part 4

MIFARE, MIFARE Classic, MIFARE DESFire, MIFARE Mini and MIFARE Ultralight are registered trademarks of NXP B.V. and are used under license. Windows and Windows Vista are registered trademarks of Microsoft Corporation in the United States and/or other countries.